
Applications of Simulated Students: An Exploration

Kurt VanLehn

Stellan Ohlsson

Learning Research and Development Center

University of Pittsburgh, and

Rod Nason

Centre for Mathematics and Science Education

Queensland University of Technology

December 16, 1993

Abstract

It is now possible to build machine learning systems whose behavior is consistent with data

from human students. How can education use such simulated students? Applications that help

three user groups are discussed. Teachers can practice the art of tutoring by having them teach

a simulated student. Using a simulation instead of a real student allows teachers to see how their

actions a�ect that student's knowledge, to undo their actions, and to try their skills on students

with varying prior knowledge and learning strategies. Students can learn in collaboration with

a simulated student. Because the simulated student can be simultaneously an expert and a co-

learner, it can sca�old and guide the human's learning in subtle ways. Instructional developers

can test their instruction on simulated students. Unlike formative evaluations with real students,

a simulation-based evaluation can indicate exactly what piece of the instruction caused which

pieces of knowledge, and thus help developers troubleshoot their instructional designs early in

the design process. For each of these three areas of application, inherent technical limitations,

existing systems and prospective systems are discussed.

New technologies have made it possible for computer systems to learn sophisticated skills and

knowledge. Both symbolic machine learners and arti�cial neural networks have demonstrated

remarkable successes, especially within the last decade. During that time, empirical work on human

learning of higher level skills and knowledge has expanded enormously (see VanLehn, 1989a, for a

brief review), and several general theories of skill acquisition have been proposed (Anderson, 1983;

Holland, Holyoak, Nisbett & Thagard, 1986; Newell, 1990; Ohlsson, 1993; VanLehn, 1989b). It is

1



now possible to build computer systems that simulate human students as they learn educationally

signi�cant subject matter such as arithmetic (Badre, 1972; Ohlsson & Rees, 1991; VanLehn, 1987,

1989b), algebraic equation solving (Neves, 1978, 1981), geometry (Anderson, Greeno, Kline &

Neves, 1981; Neves & Anderson, 1981), college physics (Elio & Scharf, 1990; Larkin, 1981; VanLehn,

Chi & Jones, 1991), organic chemistry (Ohlsson, 1993), automobile repair (Redmond, 1989, 1992),

electronics (Mayer, 1990) and Lisp programming (Anderson & Thompson, 1989; Pirolli, 1991).

A technology that can simulate students presents an opportunity for education. How best can

education take advantage of this new technology? We suggest that there are three broad classes

of opportunities. Teachers can develop and practice their craft on simulated students. Students

can work collaboratively with a simulated peer or by teaching a simulated student who is less

knowledgeable than themselves. Instructional designers can pilot test their products on simulated

students in order to get precise feedback early in the design process.

This paper explores each of these three application areas. Most journal articles present new work

or critically review a body of existing work. However, our work is just beginning in these areas,

so we can report mostly on design constraints that have been uncovered during the early stages

of development. Although others have produced educational systems based on machine learning

models of students, the body of work is as yet too small to support an integrated or critical review.

Nonetheless, even this modest amount of designing and prototyping has revealed some non-obvious

conclusions. In particular, we will argue that teacher training is currently the most feasible applica-

tion of simulated students. Development of the other two application areas, collaborative learners

and formative evaluations, require overcoming signi�cant challenges in human-computer interaction

and machine learning, respectively. However, this and our other conclusions are tentative as they

are based only on a small body of work and some preliminary designs. Our overall conclusion,

and the main motivation for writing this paper, is that the technology for cognitive simulation of

learning is now ripe for application. The educational problems exist and the simulation technology

exists. It is just a matter of putting them together. This article is a speculative mixture of optimism

and caution|an exploration, just as the title says.

Each application area will be discussed in separate sections. A major consideration will be

limitations due to the current state of the simulation art. The few prototype systems that exist

will be reviewed brie
y. In order to make concrete our vision of the future, we sometimes o�er
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speculative scenarios of humans interacting with a hypothetical system. However, before embarking

on the exploration of the three application areas, it is worth clarifying the basic notion of a simulated

student and introducing two important distinctions among simulated students.

1 Simulated students are models of human learning

In order to model a single episode of learning, the simulated student is given two inputs: (a) a

formal representation of the relevant parts of the human student's knowledge just prior to the

episode, and (b) a formal representation of the instruction given to the human student. The model

produces two outputs: (a) a formal representation of the human student's knowledge just after the

instruction, and (b) a formal representation of the student's behavior during the learning episode.

Simulations of longer periods of learning are accomplished by running many cycles of the above

process. Interaction with the human student is formalized as a sequence of instructional units.

These units might be as large as a whole lesson or as small as a single proposition in a conversation.

Each unit is given to the simulated student, which produces behavior and modi�cations to the

knowledge base on each cycle. These behaviors and modi�cations should match the human student's

behaviors and knowledge shifts, in so far as they can be determined.

Many kinds of simulated students exist. It is helpful to classify them along two dimensions:

the granularity of their knowledge and processes, and the extent to which their model of learning

is table-driven. These are not the most common distinctions used to classify expert and student

models (Anderson, 1988; Dillenbourg & Self, 1992a; VanLehn, 1988), so the next two sections will

discuss them in some detail.

1.1 The grain-size of a simulated student

The grain-size or granularity of a simulated student refers to the amount of detail in its knowledge

representations and processing. A �ne-grained model of physics learning might have knowledge

represented by the rules shown in Table 1. Its problem solving and learning process would also

be quite involved with getting the details right. Such �ne-grained processing allows its predictions

about observable behavior to be quite detailed. For instance, it could predict the order in which

vector equations are written on the worksheet. As a second example, Ohlsson (1987) and Ohlsson,

Ernst and Rees (1992) describe a model in which individual eye movements are represented { a
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Table 1: An example of �ne-grained knowledge of physics

1. If B is a body,

S is a taut string, rope or chain,

S is tied to B,

then there is a tension force T on B due to S.

2. If there is a tension force T on B due to S,

and S is inclined at an angle of A degrees,

then T is inclined at an angle of A degrees.

3. If there is a tension force T on B due to S,

then magnitude(T)=tension(S).

very �ne-grained level of analysis. The grain-size distinction applies to the whole simulated student:

knowledge, processes and behavior.

In contrast, a large-grained model of physics might represent knowledge with atomic features,

such as

knows-kinematics-of-uniform-acceleration

knows-Newton's-laws-of-motion

knows-gravitational-force-law

knows-elementary-contact-force-laws

knows-conservation-of-energy

knows-definition-of-kinetic-energy

knows-definition-of-potential-energy

For this simulated student, a textbook chapter of instruction could be formalized by listing the

number of times each concept was referenced, either in the text or in the exercise problem solutions.

The learning process could be formalized as a neural network or Bayesian network that changes the

weights of the concepts in the knowledge base as a function of the frequency of occurrence of the

concepts in the instruction. Such a simulated student would be fairly large-grained and therefore

only a rough approximation to a human learner.

The two grain sizes exempli�ed represent the end points of the granularity scale. Simulated

students can be located between these extremes.
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1.2 Tabular vs. algorithmic simulations of learning

Another major distinction among simulated students is whether the processes that model learning

are primarily tabular or primarily procedural. In principle, each cycle of a simulated student

computes a function whose inputs are the prior knowledge and the instruction, and whose outputs

are the learning-modi�ed knowledge and the behavior. This function can be implemented as a table

or an algorithm (procedure). For instance in the large-grained model mentioned earlier, it would

be quite feasible to assign new weights to concepts by looking them up in a table indexed by their

old weights and their frequency in the instruction. On the other hand, the new weights could also

be computed by an algorithm.

One advantage of tabular models is that they can be implemented without really understanding

the human learning processes, given that one has enough data from human learners to �ll the cells

of the tables. Another advantage is that tabular models of learning can be more accurate than

algorithmic models because they usually have more degrees of freedom for �tting the data. One

disadvantage is that tabular models are only feasible when the knowledge and instruction can be

broken up into pieces that can be used to index tables. This may not do justice to important

aspects of the human learner's understanding. Another disadvantage is that a tabular model can

accept a piece of instruction only when it is already in the model's table. Although a tabular model

can handle novel sequences or combinations of instructional pieces, it cannot handle new pieces.

Neural and Bayesian networks are partly tabular and partly algorithmic. Their structure imposes

some theoretical constraints on the relationship between inputs and outputs, but they can still be

parameterized from human learning data without really having a well-understood theory of that

data. Whether a simulated student is tabular or algorithmic is not a binary distinction, but a

matter of degree.

Although there are certainly other important distinctions among simulated students (c.f. Dil-

lenbourg & Self, 1992a; VanLehn, 1988), the granularity and the tabular/algorithmic dimensions

are su�cient for the subsequent discussions.
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2 Simulation-based teacher training

Simulated students can be used to train teachers by having the teachers teach the simulated students

and observe whether their teaching has the desired e�ects. This idea is not new (Doak & Keith,

1986). However, because simulations of learning have only recently become available, most existing

systems train teachers in activities that do not directly involve students learning. Simulation-

based systems exist that train teachers to diagnose arithmetic bugs (Brown & Burton, 1978; De

Corte, Verscha�el & Schrooten, 1991; Nason, 1991), to organize reading groups (Shelley & Sibert,

1991) and to manage classroom motivation (Wood, 1991). Now that the technology is available for

simulating learning, simulations can help train teachers in activities that directly involve students

learning. However, there are still some limitations imposed by the technology.

2.1 Limitations of simulation-based teacher training

Three limitations spring to mind. First, teachers must often work with a whole classroom of

students, but most of the current cognitive simulations of learning (op. cit.) assume that the

student is either working alone or under the supervision of an individual tutor. There are as yet

no models of students learning in groups or in classroom settings. Although machine learning has

begun to explore multi-agent learning and cognitive psychologists have begun to study learning in

groups, it may take a decade or more before we have good simulated students for multi-student

learning situations. Because the current state of the simulation art allows us to simulate only

students working alone or with a tutor, near-term applications should focus on enhancing teachers'

tutoring skills.

A second limitation is that current technology for speech and text processing is very limited, and

yet natural language communication is an important part of any human-human tutoring session.

This is, of course, a familiar problem for the developers of intelligent tutoring systems, where the

machine plays the role of teacher instead of student. The ITS community has found that a fairly

natural communication can occur without natural language processing by using menus, graphics

and limited linguistic processing. However, these techniques still work best only with certain

subject matters, such as mathematics, where even human-human communication is mostly via a

formal language. These same limitations apply to simulation-based tutor training systems as well

as ITSs. Natural language processing has been making steady progress for many decades, but it
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will probably require several more decades before simulated students can actually converse with

the teacher in natural language.

A third limitation is that tutoring can have a profound e�ect on the student's motivation and

self-con�dence (Lepper, Aspinwall, Mumme & Chabay, 1990), but none of the existing simulated

students model such e�ects. Fortunately, computational models of a�ect are beginning to appear

(e.g., Ortony, Clore & Collins, 1988). It will probably be only a few years until we see simulated

students getting frustrated and depressed when they cannot solve problems that they think should

be easy, and becoming elated, excited and self-con�dent when they solve problems they think are

hard. Until then, simulated students can only model students whose maturity and commitment is

so robust that their self-con�dence and motivation are not much a�ected by tutoring.

Given these limitations, the current technology for modeling learning should be most useful

in training tutors of highly motivated students learning formal subject matters, such as science,

mathematics, engineering, equipment troubleshooting, and so on.

2.2 Advantages of tutor training systems

Students typically spend much more time in the classroom than in tutoring sessions, so is it really

worth while to improve teachers' tutoring skills? This is a di�cult policy question whose full

discussion would go far beyond the scope of this article. However, because time with a tutor is

so rare, it is important that the time be used as e�ectively as possible. Tutors vary widely in

their e�ectiveness. Some teachers, even very experienced ones, treat a tutoring session just like a

classroom and make only minor adjustments in their curriculum scripts (Putnam, 1987). On the

other hand, professional tutors exhibit almost miraculous skill, converting remedial math students

into highly motivated, top-performing students (Lepper, personal communication, 1992). If schools

can a�ord to tutor students for only a short time, it is important that the tutors be skilled at

tutoring.

It is important that future teachers and tutors understand is that their role is not necessarily

to \tell" things to their pupils, but rather to shape the tutorial situation so that students will

construct their own knowledge. A tutor-trainer could allow teachers to discover for themselves how

important it is to allow students to construct their own knowledge. A scenario presented later

demonstrates how this constructivist philosophy can be employed to teach itself.
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Tutoring, like all cognitive skills, requires practice. Because tutors must react almost instan-

taneously to the student, they must practice enough to make their responses nearly automatic.

Automatizing even a single rule for a cognitive skill takes hundreds of trials of practice (Carlson,

Sulivan & Schneider, 1989). Worse yet, novice tutors are not a blank slate, but often have bad

habits that are di�cult to break (Swanson, 1992). These features suggest that becoming an expert

tutor might take much more practice than becoming an expert in other cognitive skills. Clearly, a

simulation-based practice environment would make logging large numbers of practice hours much

easier.

Simulation-based practice environments have an excellent track record in training complex skills

such as 
ying an airplane, tactical planning, troubleshooting, air tra�c control, �nancial decision

making, and many others. It is not so farfetched to use simulations in training yet another profes-

sional skill, teaching. The traditional advantages of simulation-based training should also apply to

teachers learning to tutor. In particular:

� Teachers can inspect the simulated student's knowledge base, and thus tell if their tutoring

actions are having the intended e�ects.

� If the teachers do not like the e�ects of their most recent actions, they can reset the simulated

student's knowledge to an earlier state and try again.

� Teachers can replay a tutorial session, in order to study its e�ects on the simulated student's

knowledge.

� When teachers work in teams with a simulated student, they can discuss their theories of

what the student is learning and how best to teach it without any danger that the student

will \overhear" their discussion or get bored and leave if the discussion goes on for a long

time.

� Teachers can modify the simulated student's initial knowledge, then replay the tutorial session

in order to see how di�erent students would react to the same treatment.

� Teachers can experiment ethically with novel teaching tactics. If the tactic fails, it will not

hurt any human students.
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� As in Sherlock (Lesgold, Lajoie, Bunzo & Eggan, 1991), simulated students can be rigged

to make important situations occur much more frequently than they would with human

students. This increases the range of pedagogical situations to which teachers are exposed

during training.

� In order to avoid wasting the teachers' time, tutoring situations that they can easily handle

can be made to occur infrequently. For instance, when learning algebra, the simulated student

can be rigged to never make an arithmetic mistake or to forget a negative sign.

� A teacher educator can more easily supervise and evaluate novice teachers when the novices

are tutoring simulated students, rather than human students.

Most of the activities listed above cannot be done with human students, or even with human actors

playing the role of student. Simulated students are necessary for achieving those advantages.

The nature of teacher training itself adds two advantages to the list beyond those normally

obtained with simulation-based training.

� The simulations can be rigged to require teachers to articulate, re
ect upon and evaluate their

implicit theories of learning and teaching. For instance, teachers who used the Buggy game

often reported that they used to think that most arithmetic errors were due to carelessness

or forgetting, but Buggy convinced them that apparently random errors are often due to

deliberate execution of faulty procedures (Brown & Burton, 1978). Teachers who had worked

with the Prodigy simulated student volunteered that they \for the �rst time really understood

what some of the research papers from the mathematics and educational psychology courses

`had been on about.' " (Nason, 1991, p. 250).

� Simulations can provide an e�ective means of facilitating the transfer of educational research

�ndings into classroom practice. The next section illustrates such a transfer, wherein the latest

�ndings on the relationship between explanation and learning are brought to the attention of

teachers in a manner that should make the �ndings easy to understand and clearly relevant

to the teachers' practice.

� Teachers can be encouraged to try di�erent teaching strategies with the same simulated

student. They might try a larger variety of strategies because they cannot hurt the simulated
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student. They can draw stronger conclusions from their experiments because the students'

initial knowledge and learning strategies are the same in all trials.

� The simulation can be paused to allow teachers to re
ect on their own activity of plan new

activities. Moreover, it need not get frustrated or angry. By removing the time pressure and

a�ective stresses that come with tutoring a human student, teachers have more opportunities

to become a re
ective practitioner and learn from their own activity.

� Certain aspects of the subject matter are always more di�cult to learn. By teaching a

simulated student, the techer can more rapidly discover the \lay of the land" and in particular,

discover mind bugs that are common with the subject matter.

2.3 A speculative example

In order to illustrate some of the advantages of simulation-based tutor training, this section presents

a hypothetical scenario of a teacher teaching physics to the Cascade system (VanLehn, Jones & Chi,

1992; VanLehn & Jones, 1993a,b,c; Jones & VanLehn, 1992). Cascade is a algorithmic simulated

student that uses a rather �ne grain size. Its knowledge of physics is contained in rules much

like those in Table 1. It learns these rules by a kind of impasse-driven learning (VanLehn, 1989b,

1991; VanLehn, Jones & Chi, 1992). When it reaches an impasse during problem solving, it uses

heuristics to invent a new rule.

Cascade is a fairly mature cognitive simulation. It was originally built to model the self-

explanation e�ect �rst observed by Chi, Bassok, Lewis, Reimann and Glaser (1989). More recently,

it was compared to protocols of 9 subjects as they learned a chapter of physics (Jones & VanLehn,

1992; VanLehn & Jones, 1993a). It is currently being extended to model long-term learning. The

goal is to be able to learn about half the material covered in a freshman mechanics course and

model many of the psychological �ndings, including expert-novice di�erences, the practice e�ects

and the transfer phenomena (VanLehn, 1989a). Although Cascade is currently limited to learning

by studying examples and solving problems, we are extending it to learn from a tutor who an-

swers questions and occasionally o�ers unsolicited advice. Clearly, these extensions are necessary

if Cascade is to be used for training teachers. In the rest of this section, we will imagine that these

extensions have been completed in order to see how a �ne-grained tutor training system might
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work.

Suppose the tutor selects the problem shown in the top panel of Figure 1. Cascade starts by

drawing a free-body diagram. A free-body diagram should have a vector (arrow) for each force.

Cascade �rst draws the free-body diagram shown in the bottom panel of Figure 1, pausing brie
y

after each vector in order to allow the tutor to interrupt if she wants to. Cascade assigns coordinate

axes. Cascade begins to apply Newton's law by typing Py = P sin 30 and pausing as usual. This

time, the tutor interrupts and selects \No, try again" from a menu because the equation is missing

a negative sign. Cascade checks its derivation of the line, and �nds that it has no alternative paths,

so it had to generate this equation. So it responds, \I can't see what's wrong." The tutor selects

\It should be..." from the menu, then edits the equation printed by Cascade, inserting a negative

sign to make it Py = �P sin 30. Cascade responds \ok" but does nothing else.1

Place �gure 1 about here.

Caption: A physics problem and its free-body diagram

From the brevity of Cascade's response, the tutor suspects that Cascade did not learn anything

from the feedback, so she opens Cascade's knowledge browser, which allows her to look through

Cascade's rules. Cascade's rules are annotated with their learning history, so the tutor can see

when and how each was acquired. The teacher soon determines that Cascade learned nothing

from her feedback on the negative sign. Because human students are not equipped with knowledge

browsers, the teacher could never be certain what a human tutee learned from her feedback. With

the certainty a�orded by the knowledge browser, the teacher suspects that this kind of feedback is

not always a good tutoring strategy (which it isn't, according to Merrill et al., 1992). She might

even realize that simply trying to tell Cascade the target knowledge had failed, so she should try

to get it to construct its own understanding of the negative sign. (In fact, Cascade is a purely

constructivist learner.) Although she could back up the tutoring session and try a di�erent way

1Di�erent students have di�erent learning strategies and habits. The current version of Cascade has parameters

that control, for instance, how deeply it explains examples to itself (VanLehn & Jones, 1993a). Similar parameters
could control how deeply it processes negative feedback, such as that given above. For this illustration, we assume

that the parameters are set to make Cascade merely accept negative feedback without trying the understand it deeply

or rebut it.
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of handling Cascade's error, let's assume that she prefers to continue tutoring and try alternatives

after the session is over. The tutor decides to try a risky tactic and selects \Please explain...." from

the menu and highlights the line Py = �P sin 30. This asks Cascade to explain the line. Normally,

the tutor only asks students to explain lines that they have written. Here she is asking Cascade to

explain a line that she modi�ed in the hope that this will cause it to construct an understanding

of the line. She thinks that this tactic probably won't work, so she would not waste precious time

on it if she were tutoring a real student. However it is �ne to waste Cascade's time, and Cascade

will not get frustrated or angry.2 So the teacher decides to try having Cascade explain a line that

it did not entirely produce.

This tactic succeeds. Cascade tries to explain the line, and reaches an impasse trying to explain

how the minus sign was obtained. However, the fact that the inexplicable object is a minus sign

triggers an overly general rule of mathematics: mathematical operations often preserve signs. The

formula �P sin 30 is obtained by projecting the vector P onto the negative part of the y-axis. This

is a mathematical operation. The overly general rule suggests that projection onto a negative axis

produces a negative term, so Cascade builds the following new rule:

If a force vector is projected onto the negative part of the y-axis,

then the resulting algebraic term is negative.

This learning event may seem unlikely, but it is based on sound psychological research. Chi et al.

(1989) analyzed protocols of students studying examples. They found that when subjects explained

solution lines to themselves, they learned much more than they would otherwise. This �nding has

been replicated and extended many times (Pirolli & Bielaczyc, 1989; Fergusson-Hessler & de Jong,

1990; Bielaczyc & Recker, 1991; Chi, de Leeuw, Chiu & LaVancher, in press; Pressley et. al, 1992).

This particular learning event, wherein a rule about projection of negative signs was discovered by

explaining a line, occurred with 4 of the 9 Chi et al. subjects (VanLehn & Jones, 1993b) Of the

other 5 subjects, 3 knew the rule already and 2 learned it. In short, there is sound psychological

evidence for this particular learning event as well as the general mechanism of learning by explaining

solution lines to oneself. Needless to say, if teachers are going to learn from a simulation, they must

believe that it adequately models human students, so it is important that the psychological research

2Although we plan to augment Cascade with a model of motivation, this scenario makes it clear that there are

times when one wants to turn the motivation module o�.
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behind a simulation be sound.3 The system should probably provide a menu item that explains

a learning event to the teacher and cites the appropriate literature. In this fashion, teachers can

become aware of important research results in a context that makes it easier to understand both

the result and its relevance to their teaching.

This scenario illustrates several things. First, currently available cognitive simulations of learn-

ing are adequate for building a simulation-based practice environment for tutors. The simulations

are both computationally su�cient for learning and psychologically sound. Second, natural lan-

guage interaction is not necessary. In this task domain, menu selections, pointing with a mouse,

and editing are su�cient. Third, it may not hurt that a simulated student lacks a model of moti-

vation. In fact, it might even encouraged a teacher to try things that she would not try otherwise

for fear of frustrating the student. Fourth, not all the technical problems are solved. Cascade, for

instance, is too slow for a really natural interaction with human teachers when it runs on a 16Mhz

risc workstation. However, this and similar technical problems are not insurmountable obstacles.

Once such a practice environment is in place, it can be augmented with feedback and hints that

will help teachers learn how to tutor. The expert module for such a tutor-training system could

even be the tutoring heuristics used by intelligent tutoring systems.

2.4 A tutoring environment based on a large-grained, tabular simulated student

Prodigy is a teacher training system that enables teachers to develop their skill in diagnosing stu-

dents who have di�culty in fractions arithmetic (Nason, 1991; 1993). The core of Prodigy consists

of a set of simulated students. Each simulated student was constructed on the basis of several

hours of detailed empirical data from a particular human student who had di�culties with frac-

tions. Each simulated student within Prodigy mimics the behaviors observed in the corresponding

human student at a �ne grained level. For example, the simulations mimic the handwriting and the

writing speed of the observed students. Each simulated student in Prodigy exempli�es a di�erent

set of bugs. The computational rules that drive the behavior are implemented in a general and

robust way, so that the simulated students behaves sensibly even if it is given fraction problems

which were never given to the human students that they are based on.

3When teachers played the Buggy game (Brown & Burton, 1978), they often found it hard to believe that such
strange subtraction bugs really were found in children's work. Even the developers of commercial diagnostic tests

were incredulous. If the game's authors had not had solid empirical work from several large studies, none of these

informal trainees would have believed the simulations and hence would have learned little from the Buggy game.
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A session with Prodigy begins with the user selecting a simulated student. The user poses

problems to that student and observes the resulting behavior. Hypotheses about the simulated

student's bugs can be veri�ed by accessing a knowledge browser. However, the Prodigy knowledge

browser is based on a di�erent concept than the knowledge brower envisioned for the Cascade system

and described in the previous section. In Prodigy, rules are expressed in English that approximates

the human student's answers to diagnostic questions. Hence, using Prodigy's knowledge browser is

more like listening to the student than it is like opening up the student's head to see what is inside.

Prodigy is fully implemented with an easy-to-use interface and runs on an IBM PC. Preliminary

trials indicate that student teachers do gain an increased appreciation of the complexity of the

relation between observable behavior and the underlying procedural knowledge.

The next version, Prodigy MK2, will let student teachers practice tutoring skills as well as

diagnostic skills. This will be accomplished by extending the interface so that the user can input

instruction as well as diagnostic problems, and by extending the simulated students with a learning

facility that will respond to the instructions. The scenario of working with the extended system will

be similar to the hypothetical scenario described for the Cascade system: The student teacher can

pose diagnostic problems, construct an hypothesis about the simulated student's di�culties, input

some instruction, and then observe the e�ects of that instruction, either by posing new problems

or by inspecting the knowledge directly through the knowledge browser.

Prodigy is interestingly di�erent from Cascade in that it uses a large-grained representation of

knowledge consisting of a list of procedural skills, such as

the-addition-of-fractions-with-like-denominators

the-generation-of-equivalent-fractions

the-generation-of-lowest-common-denominators

the-conversion-of-fractions-to-new-denominators

and with a list of concepts, such as

understands-that-fractions-may-represent-equal-sized-parts-of-a-whole

understands-that-denominator-tells-the name-of-the-fraction

understands-that-numerator-tells-number-of-fractional-parts

understands-that-fractions-may-also-represent-sharing-division
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understands-that-fractions-are-numbers-that-show-amounts

understands-notion-of-inverse-proportion

understands-that-same-quantity-is-represented-by-many-fractions

understands-that-tow-quantities-have-many-common-denominator-fractions

In Prodigy MK2, the conceptual knowledge determines which procedures it uses. If certain key

concepts are missing from the simulated student's repertoire of conceptual knowledge or if the

repertoire contains certain misconceptions, then correct procedures may be replaced by incorrect

procedures or malrules. Although these incorrect procedures generate incorrect solutions for some

problems, they may generate correct solutions for others. Thus, in order to produce a sound

diagnosis, the tutor needs to administer and to observe the simulated student doing a wide variety

of problem types.

Learning will be represented in a tabular fashion. The learning activities that a tutor can

administer to the simulated student are selected from a menu. Upon request, Prodigy will explain

what a selected activity contains. For each topic (e.g., comparison of fractions, estimation of

addition of fraction, addition of fractions with like denominators, equivalent fractions, etc.), there

are four types of lessons, based on Ashlock, Johnson, Wilson and Jones (1980):

� Initiating activities provide the student with problems that let him or her improvise solutions

using what he or she already knows to solve problems.

� Abstracting activities use a range of concrete and pictorial representations of fractions in

order to focus each student's attention on their similarities and di�erences, and to highlight

the relationships between the concrete representations and written fraction notation.

� Schematizing activities let the students look for and discover interrelationships between the

new and previously known concepts and skills.

� Drill and practice activities provide practice for concepts and skills.

Prodigy's simulated student does not work through these instructional activities the way Cascade

works through physics examples and exercises. Instead, it has a table that indicates what the

learning activity's e�ects on the knowledge representation would be. For example, a drill and

practice activity on generating common denominators will only produce short-term increases in
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procedural skills because the underlying problem of an inadequate conceptual base has not been

addressed by this type of activity. Long term mastery of the processes involved in adding fractions

with unlike denominators is achieved only if the teacher also selects and adequately sequences

initiating, abstracting and schematizing activities that facilitate the development of the underlying

fraction and addition concepts.

Prodigy's table represents a theory of learning. Its cells have been �lled in a manner that

is consistent with the empirical literature on the learning of fractional arithmetic (e.g., Cuneo,

1988; Hart & Kerslake, 1983; Kerslake, 1986; Post, Wachsmuth, Lesh & Behr, 1985; Ohlsson,

1991, Tatsuoka, 1984). The point here is that when the subject matter is such that a complete

algorithmic model of learning is not yet available, one can still produce a viable simulation. Indeed,

because the tabular approach is so unconstrained, it might o�er even more empirical �delity than

algorithmic simulations, which necessarily use well understood learning mechanisms that are feasible

to implement.

3 Collaborative learning and learning by teaching

Simulated students may make it possible to improve upon a traditional teaching method wherein

students work together in pairs or small groups. Such collaborative learning or peer learning is

quite popular despite the fact that quantitative studies have shown that it produces only modest

improvements over traditional classroom teaching. For instance, peer learning produces an im-

provement of .80 standard deviations over classroom teaching versus 2.0 for human tutors and 1.0

for intelligent tutoring systems (Bloom, 1984; Anderson & Reiser, 1985). Teachers often prefer peer

learning because they believe that it improves students in ways that are not easily measured by

conventional tests. For instance, peer learning may increase transfer to work places where collabo-

rative work is common, or it may increase students' collaboration skills. Regardless of the reasons

for its popularity, the quantitative studies show that there is room for improvement in peer learning

along cognitive dimensions.

3.1 What advantages would a simulated peer have over a human one?

The technology exists to substitute simulated students for one or more of the students in a collab-

orative learning situation. But why should we bother? What are the cognitive dimensions along
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which peer learning can be improved? Can simulated students move the peer learning situation

along those dimensions?

One common �nding in studies of collaborative learning is that the students who teach more

also learn more. For instance, Webb (1989) found that learning correlated more with the number

of times a student answered a question of another student than with the number of times a student

asked a question (for similar �ndings, see O'Donnell et al., 1990; Pressley et al., 1992). This

result is counterintuitive. One would expect the people seeking knowledge (question askers) to gain

more knowledge than those dispensing knowledge (question answerers). The �nding that question

answerers learned more is reminiscent of the Chi et al. (1989) �nding that students who explained

physics examples learned more e�ectively. Apparently, explaining things both to oneself or to

another student helps one's understanding.

This �nding about collaborative learning implies that one way to improve it is to put more

students into the question answerer role. Suppose one of the students in a pair learning situation

is a simulated student. It can ask questions of the human student. Answering the questions should

increase the human student's learning. Of course the simulated student should avoid pestering

the student with questions about knowledge that the student has already mastered. It should also

avoid asking about topics that are totally unfamiliar to the human student. A really sophisticated

simulated student would maintain a model of the human student and only ask questions that are

pedagogically appropriate given what it believes the student knows. That is, it would maintain

a traditional student model. However, it may be di�cult to obtain enough information about

the human to maintain a student model. An equally e�ective tactic might be to use the simulated

student's knowledge, which evolves as the simulated student learns, in place of a traditional student

model. Suppose that the human and simulated student had been collaborating for a long time.

They will have studied the same material, solved the same problems and even produced the same

solutions. They should have approximately the same knowledge.4 If the simulated student only

asks questions about topics that it is genuinely uncertain about, then those may be just the right

4This technique might work for regular intelligent tutoring systems. The current practice in student modeling is
to use primarily the student's actions to �t the student model, and either ignore the instructional activities entirely

or to use them merely to bias the interpretation of student actions. If a simulated student for the instruction exists,

then one could reverse the priorities. For instance, if the simulated student has just learned something, then the
student modeler could assume that the human student just learned the same thing, until the human student's actions

prove otherwise.
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questions to ask the human student in order to increase that student's learning.

The discussion above has focused on just one kind of interaction: question asking and answering.

Research in small work groups has found many kinds of interactions that are correlated with learning

rate (see Pressley et al., 1992, for a review). Simulated students can probably be designed to increase

the frequency of many bene�cial interaction types.

Simulated students provide an antidote to a serious problem with practical uses of peer group

learning. Once a teacher has placed students in a group and given them a task, there is little control

over the group's interactions because the teacher can only spend a fraction of his or her time with

that group. With a simulated student as part of the group, all kinds of pedagogically bene�cial

interactions can be staged from within the group itself { thought provoking questions can be asked,

taciturn students can be prodded to speak, bad ideas can be questioned, small slips can be caught

before they have serious consequences, attention can be directed away from areas that are already

mastered and onto areas where students are ripe to learn, and so on.

Most of this control can be exercised because a simulated student can have one thing that a

real student can never have: a second knowledge base that is nearly complete and correct. When

deciding how to act, it refers both to its \own" knowledge base and this expert knowledge base.

The expert knowledge base is used, for instance, to determine whether the current line of reasoning

is either correct, incorrect but harmless, or incorrect and destined to lead to serious confusions.

This expertise is necessary for the teacher when he or she guides a small group, so it should be

necessary for the simulated student as well. The lack of such expertise in a group composed only

of human students dooms it to be less e�ective than one with a simulated student, in principle at

least.

3.2 Limitations

Naturally there are limitations on the participation of simulated students in peer learning that are

due to the current state of technology. As discussed earlier, the state of the art in natural language

processing, and speech in particular, is not su�cient to allow machines to participate in the kinds

of open-ended discussions that groups are famous for. This means that machines will only be able

to participate in discussions that are mostly formal. As a litmus test, if one can imagine a small

group of human students successfully working on a problem when none of them speak the same
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language, then one has found a task domain where simulated students could participate as equals.

(An example of such a task domain will be mentioned in a moment.) It is important to allow the

simulated student and the human student to \see" the same screen and \point" to it.

Another limitation is that large-grained simulated students, which are easier to build than small

grained-ones, will probably not work as participants in a small group. For instance, if the simulated

student asks a human student a question about fraction addition, and the human student selects the

menu item, \use manipulatives to review meaning of common denominators," the human student

has in some sense answered the machine's question, but the human student has probably not

learned as much as would be learned if the human actually carried out the demonstration with

manipulatives. To support a natural dialogue at a pedagogically e�ective grain size, the simulated

student would probably have to use a �ne-grained knowledge representation.

A tabular simulated student can be used as a peer learning partner, although it may not be as

accurate a model of learning as a algorithmic model. Chan and Baskin (1990) suggest modeling

learning by advancing the simulated student along a prefabricated sequence of knowledge bases.

Advancement could be made in response to the simulated student's experience or in order to keep

pace with the human student's learning as monitored by some kind of student modeling. A more

incremental approach is to attach to each rule in an expert model a switch or weight that controls

whether the rule is active or not. Initially, most of the simulated student's rules would be inactive.

As in Prodigy MK2, learning is simulated by switching on rules or increasing their weight until it

exceeds a threshold. Both kinds of tabular simulated student can be implemented without machine

learning technology, which makes them easier to develop. However, they would probably not be as

accurate in portraying a student's learning as a algorithmic approach, which is why they would not

be advisable for �ne-grained teacher training. On the other hand, accurate modeling of learning

may not be important for peer learning applications if all one requires is that the simulated student's

competence keep pace with the human student's competence as the human student learns. If one

wants the simulated student to demonstrate good learning strategies in the hope that the human

student will begin to use them as well, then of course a algorithmic model of learning will be

necessary.
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3.3 A simulated physics student collaborating with a human

As an illustration of the bene�ts that could be derived from a simulated peer learner and the chal-

lenges involved in creating one, this section describes a hypothetical interaction between Cascade

and a human student. The illustration shows that a natural interaction can be held with only

limited natural language processing.

Suppose that the human student is looking at the interface shown in Figure 2. This interface

is actually just the problem solving interface used by the Olae student modeling system (Martin

& VanLehn, 1993), with an extra window at the lower left for dialogue. The top bar holds icons

for problems. The upper right window shows the selected problem. The lower right window is

for drawing free-body diagrams. The upper left window is for entering equations. The lower left

window records the dialogue between the simulated and human students.

After exchanging greetings, Cascade prints \How about working on this one?" in the dialogue

window and selects one of the problem icons at the top of the screen. The selected problem is

displayed and the free-body diagram is initialized (as shown in Figure 2). Although the human

student could disagree by selecting another icon, let's suppose that she doesn't.

Place �gure 2 about here

Caption:The screen after Cascade has suggested a problem to solve

Suppose both Cascade and the student know that the �rst step in solving force problems is to

draw the forces onto the free-body diagram, but they have to negotiate who will do it. Cascade

pauses a moment to see if the human will take the lead, and when the student types nothing, it

prints \Shall I draw the forces?" This somewhat stilted language is used over the more colloquial

\Do you want me to draw the arrows?" because it is shorter and thus faster to read, and it

is less ambiguous. The goal is to expedite communication, not to simulate a natural language

conversation. The student types \yes" and Cascade draws the forces shown in Figure 3, pausing

after each to allow the student to interrupt if she wants.
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Place �gure 3 about here.

Caption: The free body diagram, with the normal force missing

When Cascade has �nished drawing the forces, it covertly checks the correct solution, which

has been derived earlier using an expert knowledge base. Cascade observes that a force is missing

from the free-body diagram that it drew. Cascade, and presumably the human student as well, had

earlier acquired a rule for drawing normal forces.5 However, Cascade has never used that rule to

draw a normal force, so the rule's strength in memory is weak and it did not �re. Cascade reasons

that the human student may also have a weak rule for normal forces, so it decides not to move on

to equation generation, which is the next step in the procedure for solving force problems. Instead,

it asks the human student for con�rmation of its actions by printing \Okay?" in the dialogue

window. The human selects the menu item, \No, it should be..." and draws the missing force on

the free body diagram. This interaction strengthens Cascade's normal force rule and presumably

the human student's rule as well.

However, unlike a human collaborator, Cascade plays dumb and asks the human, \What's

that?" The pedagogical purpose here is to get the human student to explain the force-drawing

action, which is a good way to get students in peer learning situations to increase their learning

rate. In this case, for instance, the human student might have drawn the force by making some kind

of visual analogy with her memory of the example's free-body diagram. In answering Cascade's

question, she should recall why that force was drawn on the example's free-body diagram. Thus,

explaining the force instead of just drawing it should strengthen the student's knowledge about

normal forces.

The human student pauses a moment then types, \the normal force." Understanding expla-

nations like this one requires that Cascade do some natural language processing. However, the

context is so speci�c that such processing may be feasible.

Because the student's explanation agrees with the expert's, Cascade accepts it, and prints \ok."

Now it moves to the next step of the force procedure, which means negotiating who will do it.

Having no particular pedagogical motives at this point, Cascade uses the heuristic that the two of

5When a body is supported by a surface, there is a force exerted on the body by the surface. That is, the surface

pushes on the body in order to counteract the gravitational force and keep the body from falling. This force is called

the \normal" force because it is perpendicular (normal) to the surface.
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them should share the work evenly, which suggests nudging the human student to take responsibility

for the next step. Cascade types, \Your turn?" This way of turning over control of the dialogue is

quite clumsy compared to the subtle pauses, noises, facial expressions and body movements used

by humans in face-to-face collaboration (Merrill et al., 1992). However, it is probably the best that

can be done with current user interface technology. At least it is fast and unambiguous.

The human student types Py = P sin 30 in the solution window (the upper left window of

Figure 2). Cascade checks the expert's solution and �nds that there should be a negative sign

before the P . Its rule for the sign is quite strong, so it suspects that the human student has made

an unintentional error. It types \oops" and waits, expecting the human student to correct the error.

After �ve seconds, the human hasn't done anything, so Cascade infers that the error hasn't been

detected. It politely prints \Negative sign?" expecting that this would jog the human student's

memory and prompt her to edit the line. Again, nothing happens, so Cascade types \I think it's ..."

and edits the line itself. But when it asks, \Okay?" the student disagrees. Cascade and the human

student now have a genuine disagreement. Cascade considers what would happen if it backed down

and let the sign error persist. It looks ahead using both its rules and the expert's, and �nds that

the error would a�ect the answer but not the solution path. Cascade decides that letting the sign

error persist will not have pedagogically disastrous e�ects, so it prints, \Okay, we'll do it your way.

But let's ask the teacher about it later." Cascade sends electronic mail to the teacher describing

the problem and requesting help. When the teacher arrives sometime later, Cascade can pull up

the screen at the time of the sign error, explain the disagreement, and let the teacher take over.

Presumably, the teacher will remediate the human student's misconception.

This scenario shows that managing a peer problem solving session requires much more than just

a simulated student. Indeed, the learning capabilities of the simulated student play only a small

role in the hypothetical system (except for maintaining a model of the human student). Much of

the system's reasoning concerns management of the dialogue. However, the scenario also illustrates

that in a formal task domain, such as physics, a pedagogically useful dialogue can take place without

much natural language processing. Indeed, there are many times when the use of a text medium

for a conversation implies using more concise language and less subtle cues than are used in real

human-to-human conversations. This suggests that it is probably not necessary to fully understand

how human-to-human dialogue works in order to build a peer problem solving system.
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3.4 Simulated peer learners: The larger picture

Although the idea of a simulated learning partner is not new (Chan & Baskin, 1990; Gilmore & Self,

1988; Cumming & Self, 1991), few implementations exist. Dillenbourg and Self's (1992b) system

teaches a student how to rearrange electoral districts to maximize the number of seats held by a

political party. The human student and the simulated student are working for the same party, and

they argue over which redistricting tactics are most likely to increase their party's winnings. Hintze'

(1991) system is con�gured more like a help system than a collaborating partner, even though Hintze

calls it a co-learner (Dillenbourg's term for a simulated learning partner). The human student

tries to discover the function of the keys on a fancy telephone. The system checks the student's

hypotheses and sometimes suggests one of its own. Palthepu, Greer and McCalla's (1991) system

acts like an interactive knowledge acquisition tool for inheritance hierarchies. The student tells the

system facts, such as \mammals have legs," \humans are mammals" and \dolphins are mammals."

The system asks questions in order to complete the inheritance hierarchy (e.g., \Are humans and

dolphins the only mammals?") and checks the hierarchy for consistency (e.g., \Do dolphins have

legs?"). All three systems are similar in that they contain only two components: a learning module

that updates the simulated student's knowledge base, and a dialogue control module that decides

what to say next. None of the systems contain an expert module, so none know when the students

have adopted a misconception or are wasting time exploring unproductive territory. In a sense,

these are pure co-learners. As illustrated by the scenario above, a more complex system could use

covert expert and pedagogical modules to move the dialogue in pedagogically useful directions.

It is tempting to conclude that pure co-learners, which have access to the same information as a

human peer, could not be any better than humans at expediting their partners' learning. On this

line of reasoning, a pure co-learner could at best o�er only .80 standard deviation improvement over

classroom teaching, which is not as good as the 1.0 improvement of intelligent tutoring systems.

This conclusion would be unwarranted. The .80 improvement is an average over all students in the

peer learning situation. However, some students learn more than others (Webb, 1989). The earlier

discussion suggested the better students learn more because they are answering more questions.

There are probably other behaviors that also di�erentiate e�ective learners from ine�ective ones.

If a pure co-learner can increase the amount of time human students engages in question-answering
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and other productive behaviors, then they will learn more with a simulated partner than with a

human partner. The Palthepu, Greer and McCalla (1991) co-learner, for instance, is explicitly

designed to ask many questions of the students in the hope that some of them will challenge the

student to think more deeply about their beliefs, elaborate them and come to a better understanding

of the task domain.

The more complex co-learner envisioned earlier requires as much engineering as an intelligent

tutoring system does. It requires a good user interface, an expert module and a pedagogical module,

but it uses a simulated student in place of a student module. There may be a very �ne line between

such co-learners and really good intelligent tutoring systems. Studies of expert human tutors often

show that they act more like a peer in a collaborative learning situation than a pedantic dispenser of

feedback and explanations (see Merrill et al., 1992, for a review). This opens the exciting possibility

of a highly adaptive system that acts like a peer with some students and like a tutor with others.

If it contains the capabilities to be both, then it is only a matter of adjusting a dialogue parameter.

Indeed, students could try working with several simulated partners, and choose the one they like

best. The set of potential partners could vary both in how passive they are and in how much

expertise they display.

As Chan and Baskin (1990) point out, one could have a simulated learning group, with multiple

students and teachers. They present a three-agent learning situation: a human student works with

both a simulated student and a simulated tutor. Such systems, which they call learning companion

systems, require the usual 4 modules of an intelligent tutoring system, plus an additional module

for the simulated student. Chan and Baskin describe a particular learning companion system that

teaches integral calculus. It is not clear how its simulated student is implemented, as the authors

discuss both a algorithmic and a tabular approach. The authors' focus is on the interactions among

the three agents. Chan and Baskin envision a variety of patterns of interaction. Usually the human

student and the simulated student work together on problems and ask the teacher for help only

when they get stuck. The teacher chooses problems and critiques the students' solutions, but rarely

interrupts the students' problem solving. However, when problems are easy, the two students each

produce their own solutions, then check each other's work. The teacher then checks the solutions

in order to correct any errors that the students overlooked.

So far we have argued that simulated students/tutors allow one to construct learning groups
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that will have productive interactions, assuming that we know from laboratory studies which kinds

of interactions are productive. However it is also possible to use such controlled groups to conduct

the laboratory studies that will tell us which kinds of interactions are productive. In the long run,

this might help both human-only peer learning as well as simulation-based peer learning.

4 Simulation-based formative evaluation

Instructional design is the process of creating courses, textbooks, tutorials, tutoring systems and

other types of instruction. Textbooks on instructional design (e.g., Dick & Carey, 1985) emphasize

that designs should be pilot tested as early as possible. Such \formative evaluations," as they are

called, should uncover defects early in the design process when they can still be corrected.

Unfortunately, formative evaluations are seldom done (Komoski, 1974), and for at least three

good reasons. Most instructional design involves a great deal of planning before the actual pro-

duction of the artifact. For instance, one outlines a course before assembling the readings and

generating the homework exercises. One would like to have feedback on the major design decisions

long before the actual production of the instruction, but when formative evaluations are conducted

with human students, they can only be conducted with the actual instructional artifact. You can-

not give an outline of a textbook to pilot subjects and expect to get reliable information on its

merits and defects. In short, formative evaluations can only be conducted after some production

has taken place, and by then it may be too late to revise major design decisions.

The second reason that formative evaluation is seldom done is that results from the pilot subjects

are not as informative as they need to be (Twidale, 1993). A thorough evaluation administers pre-

tests and post-tests to the students, but this only allows comparison of the new instruction with

older instruction. Moreover, the comparison is based on the assumption that the tests measure what

the instruction is designed to teach. One can simply ask the students for their suggestions, but

students often do not even know that they are confused and hardly ever know what confused them.

Thus, only the most obvious defects in the instruction are uncovered by interviewing students,

and those defects may not be the most important ones. Formative evaluation should be a form

of troubleshooting. It should tell the development team exactly what is wrong and why. That

information is just not available from test scores or student interviews.

Lastly, formative evaluations are rare because they are expensive. Much instruction, particularly
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in industry and government, is turned out on tight budgets and schedules. The organization cannot

a�ord the several months that are required to round up pilot subjects and run them through the

instruction.

Simulated students may remedy all these problems that thwart formative evaluation. They

should provide cheap, fast formative evaluations that pinpoint defects in the instruction and can

work on designs that are only in the planning stages. The idea is simply to have simulated students

\take" the instruction and report on what they learned. Moreover, a formative evaluation could

use multiple simulated students so that the designer can understand the interaction of the instruc-

tion with di�ering amounts of prior knowledge and di�erent learning strategies (i.e., understand

aptitude-treatment interactions).

Ideally, an instructional designer would have the same tools that an engineer has. An engineer's

CAD station can be networked with a �nite element analysis program, a simulated wind tunnel,

or some other simulation-based analysis program. When the engineer is satis�ed with a design,

she pushes a button and sends it o� for analysis. Some time later (it can be days), the results are

available in the form of reports and a database that the engineer can interrogate in order to �nd out

how the design performed. Such simulation-based testing is not a substitute for building the real

machine and testing it because no simulation is perfect. However, the pinpoint-analysis and the

ability to evaluate designs early in the design process outweigh the �delity issues, making formative

evaluation during engineering extremely cost e�ective. Nowadays, the instructional designer can

get the equivalent of CAD stations with commercially available authoring systems or better still,

design systems that support planning as well as production of instruction (see Pirolli, 1991, for a

review). However, none have a button that one can push in order to obtain a formative evaluation.

The technology for simulation-based formative evaluation is here, but the systems themselves still

need to be built. They do not have to have perfect �delity, but they should o�er precise analyses

of instructional defects and they should work with early designs.

4.1 Limitations

The current technology imposes some major limitations on simulation-based formative evaluation.

As in simulation-based teacher training and simulation-based peer learning, the computer's limited

natural language processing capabilities restrict the types of formative evaluation that can be done.
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However, this might not be a big problem. As argued earlier, formative evaluation is best done

with outlines or early designs, rather than the actual material used by human students, because

designers need early feedback on their designs. This means that the instruction presented to the

simulated student need not be expressed in natural language. It could be expressed in a restricted

or formal language instead.

A second and more serious limitation is due to the current state of the art in machine learning.

Learning of substantial knowledge by machines is a fairly recent advance, and most systems employ

restricted knowledge representations or algorithms that limit the kinds of knowledge they can

acquire. For instance, Cascade (VanLehn, Jones & Chi, 1992; VanLehn & Jones, 1993a,b,c; Jones

& VanLehn, 1992) can learn classical Newtonian mechanics. It could probably learn closely related

topics, such as thermodynamics or aerodynamics, with only small changes. At one time, it learned

a little bit of combinatorics and elementary probability theory. However, there are many topics

that it could not learn without a complete overhaul.

The grain size of the simulated students determines the grain size of the instructional designs

they can test. If the simulation represents knowledge in terms of �ne-grained rules, then the designer

will probably have to work the design out all the way to sentence-sized assertions, examples and

exercises. If the simulation represents knowledge in terms of coarse-grained sets of skills or concepts,

then the instruction can be represented in a coarse grained way. For instance, the designer might

specify the number of exercises and the skills used, rather than generate the actual exercises.

Ideally, a formative evaluation system would have simulated students at several granularities so

that it could test designs at several points in the design process.

Algorithmic simulations of learning, rather than tabular ones, are probably necessary for for-

mative evaluation. Earlier we noted that tabular simulations should work well for training teachers

because teachers' interactions with the system could be constrained so that every unit of instruction

that they submit occurs somewhere in the system's tables and thus allows the system to produce

appropriate changes in its knowledge state and behavior. Teachers can experiment with di�erent

sequences of instructional units, but they cannot devise and submit a new instructional unit. This

limitation would probably be too strong for instructional designers. Their business often entails cre-

ating novel instructional units, and these units would not occur in the tables of a tabular simulated

student. Most formative evaluation applications require algorithmic simulations.
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The result of these technical limitations is that a simulation-based formative evaluation will

probably have to be limited to a single class of task domains, such as mathematical analyses

(Cascade's natural class), text editing procedures, electronic troubleshooting, familiarization with

equipment, etc. Moreover, the simulation will probably have to be algorithmic, avoid natural

language, and have the right grain-size for the kinds of instruction designs that need to be tested.

4.2 An illustration of simulation-based formative evaluation

Sierra was a machine learning program designed to model young children's learning of arithmetic,

elementary algebra equation solving and other simple mathematical calculational skills (VanLehn,

1987, 1989b). Sierra was a �ne-grained algorithmic model rather than a tabular model. It learned

correct procedures as well as buggy ones, just as children do.

Sierra learned from solved examples. For instance, the subtraction lessons of three major text-

books were each given to Sierra. All three textbooks introduced borrowing in problems that had

only two columns, such as

8 5

- 2 7

------

This gave Sierra trouble. It could see that the digit borrowed from was always in the upper left

corner (the 8, in this case), but it did not know how to generalize that location. Was it supposed

to be the top digit in the left-most column or the top digit in the column adjacent to the column

initiating the borrowing? Sierra ignored the explanations that accompany borrowing because they

required an understanding of the base-ten system, which Sierra (and many young children) lacked.6

When Sierra was given 3-column problems that require borrowing in the units column, such as

7 4 5

- 1 2 7

---------

6Even when the base-ten system is taught carefully, some students ignore the semantics of arithmetic procedures,

focus on syntax, and acquire bugs (e.g., Resnick & Omanson, 1987). Sierra models the syntactic learning of such

students, so its suggestions for improving instruction will tend to block bug formation by students who approach
arithmetic learning syntactically. Its suggestions can easily be incorporated into a semantically-based curriculum and

should create a \safety net" to catch such syntactical learners.
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it would not know whether to decrement the tens column (because it was adjacent to the column

causing the borrowing) or the hundreds column (because it was the left-most column). This confu-

sion causes Sierra to get stuck (reach an impasse). Students and Sierra employ a variety of ways to

work around the impasse, including omitting the borrow-from action, omitting the whole borrow,

or just picking one column and hoping that it is the right one for the borrow-from action. The

di�erent repairs to the impasse correspond to di�erent bugs. In one large study, 4 of the predicted

bugs were observed, and two of them were moderately common, occurring in the work of 6 students

each. Thus, Sierra was able to explain how several observed bugs were acquired.

Such explanations of bug origins can be viewed as evaluations of the three commercial textbooks.

They indicate exactly where some misconceptions were learned and why. In particular, the case

just given suggests that textbooks should introduce borrowing in three column problems, such as

745� 127. This would disambiguate where the borrow-from should be placed. Indeed, when Sierra

was taught borrowing with such a lesson sequence, the 4 observed bugs were no longer generated.

Thus, Sierra can not only troubleshoot instruction, it can also indicate when a modi�cation to

the instruction �xes the problem. This is exactly the kind of advice that an instructional designer

needs.

It is doubtful that such precise advice could be obtained from formative evaluations with human

students. Few students with a bug could tell an interviewer how they learned it. In order to

uncover instructional defects through test scores, a very large number of students would have to

be tested and a very detailed analysis would have to be conducted. Worse yet, many bugs are

intermittent. Students make di�erent repairs to the same impasse at di�erent times. Sometimes

further instruction causes students to abandon a bug, although it may resurface later. Thus, if

testing is not done throughout the instructional period, some defects in the instruction will be

nearly impossible to detect. Testing at the end of the instructional period will portray students as

having a large variety of errors that appear and disappear for no apparent reason. Longitudinal

testing throughout the instruction disrupts the instruction, and cross-sectional testing requires very

large numbers of subjects. So it is nearly impossible to get enough test data to uncover intermittent

bugs. For many reasons, then, human-based formative evaluation cannot yield the kinds of precise

advice that instructional designers need.

A real arithmetic textbook lesson has perhaps 10 examples and 25 exercises. The text contains
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graphics and other devices to motivate the students. The teacher may boost class involvement

by having students work problems on the board and by using real-world problems. Considerable

planning and material must be prepared in order to conduct a lesson with human students, even

if the lesson is only a formative evaluation. However, Sierra can evaluate a lesson while it is still

in the planning stages, long before all the material is generated and lesson plans made. Because

Sierra models neither practice e�ects nor motivation, it can learn from a lesson that has only,

say, 4 examples and 6 exercises. It takes a designer only a few minutes to draft a lesson using

Sierra's editor. A whole lesson sequence can be created in an hour or two. The point here is that

simulation-based evaluations can be conducted when instruction is still in draft form. If formative

evaluations must wait for all the drill, graphics and other supporting material to be generated, it

may be too late to make any di�erence in the design of the ultimate product.

4.3 A broader view of simulation-based formative evaluation

The Sierra discussion illustrated two of the advantages of simulation-based formative evaluations

over human-based formative evaluations: They yield more precise advice and they can be conducted

earlier in the design process. In order to illustrate a third advantage, we turn to another system, HS

(Ohlsson, Ernst & Rees, 1992). It shows how simulation can let the designer analyze the interaction

of the proposed instruction with prior knowledge or other individual di�erences.

Ohlsson et al. simulated the interaction of prior knowledge of the semantics of subtraction with

two kinds of instruction. That is, they took four simulated students, two that understood the

meaning of subtraction and two that could only understand subtraction as symbol manipulation.

For each pair, they taught one member of the pair the traditional decomposition algorithm, in

which borrowing-from is accomplished by decrementing the top digit in the adjacent column. They

taught the other member of the pair the equal-additions algorithm, in which borrowing-from is

accomplished by incrementing the bottom digit in the adjacent column. The decomposition al-

gorithm is more widely taught, in part because Brownell (1947) and Brownell and Moser (1949)

argued that the decomposition algorithm, while harder to execute, should be easier to learn be-

cause it was based more directly on the semantics of the base-ten system. Ohlsson et al. found

the opposite result. They found that the equal additions method was always easier to learn, and

particularly easy to learn when the simulated student understood the semantics of the base-ten
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system. In addition to questioning a widely held belief in the mathematics community, the HS

work shows how simulations can reveal interactions of instruction with prior knowledge. This is

valuable information for an instructional designer to have.

The di�erent systems described so far take di�erent kinds of instructional input. Sierra processed

instruction consisting mostly of examples and exercises. This illustrates the limitation mentioned

above, which is that instruction that uses formal rather than natural languages is easier to work

with. HS (Ohlsson, Ernst & Rees, 1992) models tutorial feedback by assuming that it is the content

of the feedback messages rather than their precise form that matters. It encodes the messages as

formal constraints, which specify what should be true of the current problem solving state and why

the constraint is relevant.

Even natural language instruction can be evaluated with simulations. Kieras (1992, 1989) has

developed a system that reads natural language text from technical manuals, such as the \owner's

manual" for the T-38 airplane. It evaluates the text for its comprehensibility, which is measured

by counting the number of nominal references that can be successful resolved given only syntactic

information and a small amount of general knowledge (e.g., that airplanes have wings). More

importantly, it points out speci�c problems with the text and suggests ways that the instructional

developer can improve it. Although the Kieras system does not actually learn anything from the

text it reads, Mayer and Kieras developed a system that learns how a speci�c electronic circuit works

by reading text7 and a schematic diagram about the circuit (Mayer, 1990). Learning is facilitated

if the system can use knowledge acquired earlier. This allows the system to be used for formative

evaluation of instructional sequences. Kieras (1991) compared the predictions from Mayer's model

with data from human subjects. The results were encouraging, but larger-scale experimentation is

needed. The Kieras and Mayer work shows that even natural language instruction may be amenable

to evaluation with simulated students in the very near future.

All the learning systems discussed here work only with a narrow range of subject matter. Sierra

can only learn procedures that manipulate written, formal symbols. HS is more general, but still

restricted to learning simple procedural skills. This limitation reduces the utility of these systems

for formative evaluations. However, it is much easier to generalize an existing system than to build

7Actually, the system did not read natural language text, but instead was given the kind of propositional encoding

that would be produced by the Kieras system if it read the text.
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one from scratch, so with only modest e�ort, the generality of any of these systems could probably

be signi�cantly increased.

Nonetheless, there will always be some limitations on the kinds of material that can be learned

by a simulated student. This implies that simulation-based formative evaluation may be most

practical in two cases:

� If designers produce many pieces of instruction in a single area, they can be evaluated with

the same simulated student. For instance, a simulated student that is capable of learning

about the operation of electronic circuits can be used to evaluate instructional material for

many di�erent pieces of equipment.

� If the instruction must be of extremely high quality, it may be worth building a simulated-

student just for it. For instance, so many students must learn how to sound out words,

that it might be worthwhile building a simulated-student that learns pronunciation rules and

exceptions, then use it to evaluate proposed sequences of readings.

5 Conclusions

Only a modest amount of experience with applications of simulated student exists. However, what

there is warrants the following conclusions.

Given a machine learning system that learns in a su�ciently human fashion, the simplest appli-

cations to develop should be tutor training systems. A basic trainer would simply allow the tutor

to practice teaching the simulated student. A slightly more elaborate system would allow the tutor

to view the simulated student's knowledge, reset the student's knowledge to an earlier state, and

replay stored tutorial sessions. Such a practice environment would set the stage for an intelligent

tutoring system that coaches teachers to become better tutors.

Simulated students can be used by human students as a learning partner or co-learner. The

machine could work collaboratively with the human, covertly manipulating the activity to enhance

the student's learning (e.g., by asking its human partner questions at just the right times). This

application requires that the machine learning system be augmented with some kind of dialogue

module that decides what the machine should say next. The dialogue module should be designed

not to generate naturalistic conversations, but to expedite the human student's learning. It may
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take considerable work with pilot subjects in order to achieve this goal. For instance, having the

simulated student ask lots of questions should promote learning, according to psychological studies

(Webb, 1989; Chi, de Leeuw, Chiu & LaVancher, in press), but asking too many questions might

irritate the human student. Thus, this particular application of machine learning probably requires

more additional work than the application of simulated students to teacher training or formative

evaluation. On the other hand, because there are many more students than teachers or instructional

designers, the higher development cost may be o�set by wider bene�ts.

The second most simple application of an existing machine learning system would be formative

evaluation. Instructional designers submit their instructional prototypes to the simulated student,

and it �nds places where it cannot learn or learns the wrong thing. In order to allow a useful range

of instruction to be evaluated, the machine learning system should be able to handle a variety of

subject matter and a variety of instructional types. Given the narrow competence of many machine

learning system, obtaining this generality might require additional programming.

All three applications can be based on �ne-grained simulations, wherein knowledge is repre-

sented in small pieces (e.g., \if a taut string is tied to a body, there is a tension force on the body").

However, it may be much easier to build a coarse-grained simulated student that represents knowl-

edge in larger pieces (e.g., has-mastered-kinematics, understands-reference-frames). Large-grained

simulations may work for teacher training and some formative evaluation, but probably not for

co-learning systems.

All three applications can be based on algorithmic simulations, wherein a theory of learning is

embedded in procedures for learning. However, theories of learning may not be readily available in

some application areas. For these, it may be possible to use a tabular simulation, where the e�ects

of speci�c instructional treatments on speci�c pieces of knowledge are recorded in tables. Tabular

simulations can be used for teacher training and for co-learning systems with modest ambitions,

but probably not for formative evaluation.

A major consideration in applying simulated students is their limited ability to understand

natural language. This constrains the choice of subject matter and instructional mode. We can

model learning of mathematical problem solving from examples and exercises, but we cannot model

learning ethics from group discussions. This constraint a�ects all three applications equally.

A second limitation with current models of students is the absence of any models of motivation.
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Current machine learners do not get bored or excited. This limitation may be soon removed as

AI begins to model a�ect and emotions (e.g., Ortony, Clore & Collins, 1985). Meanwhile, the lack

of motivation models places strong constraints on applications of simulated students in teacher

training and perhaps formative evaluation. It is probably less of an issue in co-learning, where the

simulated learner's reaction should be determined by pedagogical considerations rather than its

own personal interest in the material (if it had any).

Lastly, all the applications are a�ected by the current lack of computational models of learning

in a group. Our belief is that the learning processes that are observed operating when a single

student is working alone with examples, exercises or text, also operate when a person is learning

in a group that is arguing, collaborating or discussing those same examples, exercises and texts.

There are of course obvious di�erences in the two situations, but whether those di�erences really

matter to the learning outcomes is not yet known. On the other hand, it could be that learning

is radically di�erent when it occurs in a group. It is an empirical question that may take decades

to answer. Current work on multi-agent learning in machine learning will provide the foundations

for a simulation-based exploration of the issue. Meanwhile, it is safest to restrict applications of

simulated students to situations where a single student is working alone with passive instructional

material or with a single agent, either a tutor or a co-learner.

We have focused on three applications of simulated students, but there are others that we haven't

the space to discuss fully. For instance, Kieras (1990) shows how simulated students can be used

to obtain speci�cations of the knowledge required to do a task, or to evaluate the adequacy of

proposed speci�cations of the body of knowledge. The Cascade simulated student is being used in

the Olae student modeling system (Martin & VanLehn, 1993). Our main point is that cognitive

simulation has come of age. Although there are still limitations that will take signi�cant basic

research to remove, simulation technology can and should be used to solve educational problems

now.
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