A Smulated Student Modd for Improving Collabor ative

L earning

AuroraVizcaino Barcel6
Escuela Superior de Informética
Paseo de la Universidad 4, 13071 Ciudad Real (Spain)
avizcain@inf-cr.uclm.es

Abstract
Learning in collaboration has humerous advantages. However,
sometimes situations arise that may damage collaboration. This
is the case for instance when there are passive students in a
group. New technology may be used to detect and avoid some of
the situations that hamper efficient learning in a group. This
paper describes the model of a simulated student in charge of
controlling and fostering students learning in collaborative
environments. An evaluation of the model was carried out. The
results of the experiment indicated that in most cases the
Simulated Student detected and corrected students problems
related to their learning.
Abstrait

L'apprentissage en collaboration a de nombreux
avantages. Cependant, parfois les situations surgissent qui
peuvent endommager la collaboration. C'est le cas par
exemple quand il y ales étudiants passifs dans un groupe.
La nouvelle technologie peut étre employée pour détecter
et éviter certaines situations qui entravent |'étude efficace
dans un groupe. Cet article décrit le modéle d'un étudiant
simulé responsable de contrOler et de stimuler
I" apprentissage des étudiants dans |les environnements de
collaboration. Une évaluation du modéle a été effectuée.
Les résultats de I'expérience ont indiqué que dans la
plupart des cas I'étudiant simulé a détecté et a corrigé les
problémes des étudiants liés aleur étude.

Keywor ds: Cooperative systems and distributive
environments, Educational system modelling.

1. Introduction

Collaborative learning has well-known benefits.
However, when students learn in a group situations may
arise that reduce collaboration between the students or
impede appropriate learning. In order to control these
situations this paper proposes a model for a simulated
student which controls the students’ behaviour and acts
when a situation that debilitates collaboration or learning
is detected.

The contents of this paper are organised as follows: in
section two, the advantages of using simulated students
in collaborative learning environments are explained.
Section three describes the simulated student model that
we have developed in order to foster collaboration and
efficient learning. Section four outlines part of a

profound evaluation of the model carried out using a real
system. Finally a discussion about the results is
presented.

2. Agentsand Smulated Studentsin
Intelligent Tutoring Systemsand in
Callaborative L earning Syssems

The move from intelligent tutoring systems to
pedagogical agents began about ten years ago, when
researchers began to explore new types of interactions
between computers and students (Johnson, 1999). Agents
have played different roles, such as learning companions,
teachers, advisors, etc. This work focuses on a type of
agent that simulates student's behaviour and interacts
with human students asif it wereareal student.

Simulated students have only recently become
available, even though the idea is not new (Doak and
Keith, 1986). Simulated students improve traditional
teaching methods where students work together in pairs
or small groups (/anLehn, Ohlsson and Nason, 1994),
the following paragraphs explain different advantages of
using them in tutoring systems.

- Teachers can practice the art of tutoring by teaching
asimulated student.
Students can learn in collaboration with a simulated
student.
With a simulated student as part of the group, all
kinds of pedagogically beneficial interactions can be
staged from within the group itself- thought
provoking questions can be asked, taciturn students
can be prodded to speak, bad ideas can be
questioned, small slips can be caught before they
have serious consequences, attention can be directed
away from areas that are already mastered and
towards areas where students are ripe to learn
(VanhLenh, Ohlsson and Nason 1994).
A simulated student usually has one thing that areal
student can never have: an expert knowledge
database related to the problem to be solved. The
lack of such expertise in a group composed only of
human students dooms it to be less effective than
one with a simulated student, in principle at least
(Webb, 1989).

A simulated student can aso monitor group
interventions, detect miscommunications, and correct
misunderstandings. Another very important advantage of
using simulated students in collaborative environmentsis
that each group may have its own simulated student (it is
very difficult to have a human teacher monitoring each
group because normally schools do not have enough
teachers to do this). Besides, this simulated student is
available at any time, so students do not need to worry
about whether their partner or the teacher is busy.

3. A Smulated Student which Fosters
Collaboration and L earning

This section describes a model for a Simulated Student
which detects and avoids situations that hamper
collaboration or learning in a CSCL environment. The
Simulated Student controls the students' actions, analyses
them and checks students' knowledge in order to
encourage students to participate, or to help them to solve
the exercises when they have problems in finding the
solution.

The desired behaviour of the Simulated Student
influences the configuration of the model. In the model
outlined, the Simulated Student has a similar status to the
human students (see Figure 1). This is an important
feature, which creates several advantages such as
favouring a more comfortable environment for
collaboration or encouraging the students to reflect.
Students feel more at ease working with friends who
have a similar level of knowledge to themselves.
Goodman et al., (1998) carried out an experiment which
showed that the interaction between students is greater
than interaction with a teacher. When students receive
advice from a peer, students usually reflect on and
consider the proposal but if the proposa is from a
teacher, students do not generally query it.

The model described in Figure 1 shows the Simulated
Student and the human students using the same methods
of communication. This makes it different from previous
models where the students perceived the agents as an
animated figure which used another window to
communicate with the students (ohnson et al., 1998;
Goodmen et a., 1998). To use the same techniques of
communication for both real and Simulated Student helps
students to consider the Simulated Student as a partner.
In the previous cases, students could see the Simulated
Student as an "assistant” offered by the system.

3.1 Description of the M odel

The Simulated Student model has three main
components: the individual Student Model (SM), the
Group Model (GM) and the Simulated Student Behaviour
Figure 1. Overview of the model showing flows of
information

s
fos

S

| —
Simu. Stud .<

Model (SSBM). It also has two complementary modules:
the Information Manager and the Interface. The Interface
is the means of communication between the (real and
simulated) students. The Information Manager module
classifies the information and stores it h the student
models and group model. The SSBM uses the
information stored in the Group Model and in the Student
Models to decide when and how the Simulated Student
has to intervene. All the three main components are
described in detail in the next few paragraphs.

amoOr»zZzr2

HE

mo»nom-Z—

3.1.1 TheStudent Mode

There is a huge amount of literature on student
modelling. VanLehn (1988) defined the student model as
the component of an Intelligent Tutoring System (ITS)
that represents the current state of a student. Another
definition is that proposed by Self (1994) which states
that the student model is an element that tries to give
information about the students.

A generic student model is formed from a set of entities
where each entity expresses information about the
learner. The information that the student model contains
depends on the goals of the ITS. In our case, the goalsare
to detect and correct situations that decrease motivation
and communication in collaborative learning.

If the student model is going to work in a collaborative
application, further entities must be considered such as
individual student's goals or opinions about their partners
(Paiva, 1997). The student model that we have designed
contains new entities that allow a greater control of the
students' behaviour. The entities utilised are:

Frequency of interaction: One chalenge of groupware
applications is to provide a collective and equitable
benefit. As Grudin (1994) claims, there is often a
disparity between who does the work and who gets the
benefit from it. Equitable and regular participation
increases the amount of information available to the
group, enhancing group decision making. Improving
each student's frequency of interaction increases the
likelihood that all group members will leamn the subject
matter, and decreases the likelihood that only a few

students will understand the material, leaving the others
behind (Soller et al., 1998). Because of this, controlling
the frequency with which a student interacts with the
system and with hig/her group mates is very important.
The frequency of interaction is a critical factor for
detecting passive students

Type of interaction: Student interaction may be of
different types such as talking via a chat window (this
may also be of different types, e.g.: proposal, question or
an explanation) or solving exercises in the shared
window. Knowing the type of interaction helps to
characterise the student's role.

Leve of knowledge: The knowledge that a student hasis
afactor that al TS should take into account since it would
have to adapt its exercises, explanations and, in general,
the processing of learning to the student's knowledge.
Personal beliefs: In collaborative situations the learner's
beliefs are not only about the domain but also about the
other learners. One student's belief about another can
produce an increase or decrease in the Zone of Proximal
Development (ZPD) (Luckin and du Boulay, 1999). If a
student thinks that his/her partner has more knowledge
about a topic than him/her, s’he expects to learn more by
working with this person than studying alone. Gracile
(Ayala and Yano, 1995) is a system that uses mediating
agents to exchange information about the students' skills
and knowledge, trying to maximise the ZPD.

Mistakes: The detection of individual mistakes is very
important in determining individual misconceptions. If
one student makes | ess mistakes at the end of the session
than s/he did at the beginning, this might indicate that
learning has taken place.

3.1.2 GroupModd
The group model is defined as a way of capturing those
aspects that identify the group as a whole (Paiva, 1997).

Different opinions exist about how to model the group.
Paiva (1997) claims the group is something more than the
sum of its parts. For her the group model must be
constructed using the actions and beliefs with which the
group isin agreement as a basis. A problem with thisis
how to initialise the group model when the session is
beginning. Hoppe (1995) proposes an alternative using
individual resultsto parameterise the group situation.

The group model used is based on Paiva's proposal
because the amount of information stored in the entities
proposed by her model is sufficient for the Simulated
Student to be able to detect negative situations and act
efficiently. Theentitiesare;

Group knowledge: Beliefs that the group has. These
areinferred from the group's actions.

Group mistakes: The mistakes diagnosed from the
group actions are group mistakes. "However, it may
be the case that misconceptions that are ascribed to
the group are not shared by all the individuals of the
group, since the group beliefs are the "accepted”
beliefs, and thus may not be held by al" (Paiva,
1997, page 218).

Differences: The differences between the students
are an important factor to consider. An example of
difference is the conflict where one student supports
theory 'P' and another learner believes the theory 'not
P'. On many occasions it is convenient to use the
differences between students to trigger possible
discussions. This strategy is used by COLER
(Constantino-Gonzalez and Suthers, 2000).
Preferences: To know what type of exercises or what
kind of assistance students prefer permits the
application to be adapted to its users.

\
SM1 > [0 S . mEnl | Log of the
. Session
Pedagogical EEEEE
Module
SMn Problem Detector
> A | Action
A

—

Figure 2. SSBM architecture showing flows of information

3.13 TheSSBM.

The Simulated Student Behaviour Model (SSBM) is the
most important component in the model. This component
uses the information from the student models and the
group model to decide how it must act. The architecture
of the SSBM isdisplayed in Figure 2.

The SSBM is formed of five components, the problem
detector, the pedagogical module, the log of the session,
the domain knowledge and the action generator.

Domain Knowledge, as its name indicates, contains
information about the subject to be learnt. This
information is necessary in order to know how much
knowledge students must have at each moment and also
to adapt the Simulated Student's actions.

The Problem Detector, through the information
received from the student models, the group model and
the knowledge domain, checks whether negative
situations are taking place. This module, as Figure 2
shows, is formed of three sub-components. The first one
is in charge of control if off-topic conversations arise.
The second component monitors the group's learning
process, (this module will be explained in the following
section). The last one checks each student's participation
in order to detect passive students. It is possible to
modify these components or add new ones to avoid other
different negative situations. Thisis one advantage of this
model, thanks to its modul arity.

The Pedagogical Module indicates what action the
Simulated Student should carry out in order to avoid the
problematic situation that the problem detector identified.
Several factors are taken into account by the Pedagogical
Module before it chooses an action. They are the nature
of the problem detected, the individual and group
features, and the Log of the Session. The Log of the
Session stores all the interventions, including those of the
Simulated Student. Having a record of interventions
enables the system to know the Simulated Student's
previous answers and therefore makes it possible not
repeat answers or actions. The Log of the Session is also
useful for analysing the (simulated or real) students
behaviour.

Examples of types of action that the pedagogical
system can trigger are to motivate the students to solve
the exercises or to reinforce students learning. The
actions are classified into three groups, one group per
negative situation; this is represented by the squares in
different coloursinside the Pedagogical Module.

For each type of action that the Pedagogical Module
chooses, there exists a set of possible roles that the
Simulated Student can play. Depending on the student
models, the group model, the Domain Knowledge, and
the Log of Session, the Action Generator chooses which
role the Simulated Student should play. For example, if
the Problem Detector detects a passive student, the
Pedagogical Module can advise that the human student
beinvited to collaborate. The Action Generator decides

how the Simulated Student should invite the student,
perhaps with adirect invitation or with a question, etc.

3.1.4 Thelearning Problem Detector.

The "learning problem detector" monitors the students'
progress to decide when the Simulated Student should
intervene. For instance, if the students propose correct
solutions, the Simulated Student can ask about the
solution in order to check whether the students really
understand the solution or if they have just arrived at the
correct by chance. The group and individual knowledge
indicates what topics the students understand individually
and at a global level. Both the individual mistakes and
the group's mistakes indicate which subjects the students
do not comprehend. The preferences of the group are
another parameter to be taken into account, since a group
might always fail in the same kind of exercise because
they do not know how to approach it appropriately, even
though they understand the topic which the exercise is
asking about.

The Learning Controller sub-module checks whether
the students have problems with the topic in hand or
whether they have reached an appropriate level of
knowledge (the domain rules indicates what degree of
knowledge students should have at each moment). When
irregularities are found in the learning process, the
Irregularity Selector investigates what is causing the
anomaly. This information is passed to the Pedagogical
Module which decides what pedagogical support the
Simulated Student should offer.

The model also has two more modules: the off-topic
conversations detector and the passive behaviour
detector. They are not deal with in this paper because of
space.

3.1.5 Roles of the Simulated Student to help students
tolean

On some occasions, groups waste a lot of time trying to
solve a problem in an incorrect way. The fact that
students try different ways is a good pedagogical
technique because students learn from their experiences,
and a central part of the learning process occurs when
students attempt to apply instructional material to solve
problems for themselves (Anzai and Simon, 1979;
Anderson, 1983). Important learning progress may occur
when students encounter obstacles, work around them,
and explain to themselves what worked and what did not
(Anzai and Simon, 1979; Ohlsson and Rees, 1991).
However, this type of learning has potential cognitive
and motivational pitfalls. Students trying to solve
problems sometimes expend much time and effort
pursuing blind alleys because of errors or poor strategies.
Of course, in some cases students may learn something
valuable while searching for a solution. In many cases,
however, such episodes leave students confused and
frustrated. So if a group does not obtain feedback after

spending a lot of time working on a task, members may
lose motivation and even abandon the activity, or begin
to talk about other topics causing some group members to
feel that they are wasting their time. The Simulated
Student might avoid these negative effects by monitoring
the students' knowledge and their learning process. When
the Simulated Student detects that |earners are not close
to finding a solution it could give clues or explanations
and even, if it is necessary, indicate the correct answer.

The presence of a Simulated Student in collaborative
applications could also avoid the Group Think Effect,
which is another negative situation that arises in
collaborative environments. The Group Think Effect is
produced when the group accepts an idea for social
reasons or because it is easier to do so. If a Simulated
Student asks why they accept a proposal or proposes
wrong ideas with the goal of producing doubt, the Group
Think Effect should decrease. Table 1 summarises
situations that can take place in a collaborative learning
process. The role of the Simulated Student and the
pedagogic strategy used to control the problem are also
shown.

Situation Type of Example
I ntervention
Students cannot | Giving hints. | The index of an array

find the starts with 0, doesn't
solution. Asking for| it?
feedback. Do you remember if
the index of an array
Consulting starts with 0?
system's help. [Why don't we have a
look at the

counterexample.

Even with the| Giving The solution is j=0
clues students| solution with| because the index of
cannot find the | explanation. an array starts with 0.

solution.
Students have | Helping to| Perhaps, the mistakeis
different points [analyse in the index of the
of view. alternatives. array instead of in the
numbers contained in
thearray.
Expressing | don't agree with

Disagreement. | Tom'sproposal, inthis
case the first sentence
is not printed.

Students find [Congratulation | We are the best!!!

the solution at | s. Why was the solution
thefirst attempt. | Checking j=0?

students’
knowledge.

Table 1. SSInterventions to help students learning

Although the off-topic conversation detector and the
passive behaviour detector have not been explained
above, we are going to describe schematically how the
simulated student acts when it detects some of these

situations, so that the reader may have aglobal idea about
the roles of the simulated student.

Table 2 summarizes the role of the Simulated Student
when it detects passive behaviour. Before acting, the
Simulated Student investigates why the passive student is
not taking part in solving the exercises.

Situation Type of Example
Intervention
Student with [Asking for | Tom, didn't you
deficient feedback. understand the previous
knowledge. exerciss? You seem
Asking for | confused.
justification. Peter, Do you mind
explaining your solution
Checking to us, Tom and | don't
knowledge. understand it.

Tom, this time you
propose a solution in the
answer window, ok?

Student with | Invitation to Ann, you are very
adequate participate. quiet. What do you
knowledge. propose?
Asking for| . What do you think
feedback. about my proposal,
Ann?
Asking for/. Ann, you aent
explanations. joining in much.

Areyoutired?
Don't you like this
kind of exercise?

Asking about
preferences.

Table 2. SSInterventions to avoid passive behaviour

When students have off-topic conversations the

Simulated Student has a very clear role to get students’
attention back to the exercises.

Situation Type of Example
I ntervention
Students talk | Closing the| | don't like
about other topics | conversation. football. Let's
for along time. finish this
Giving aclue. exercise.
| think we have to
Proposing a| write "new" inthe
solution. solution, don't
Encouraging we?
studentsto continue. | The solution is
13, letstry it.
Let's try to solve
all the
exercises!!!!, ok?

Table 3. SS Intervention to avoid off-topic conversations

4. Evaluation

In order to evaluate the Simulated Student's efficiency at
detecting and controlling problematic situations, a
Simulated Student was implemented following the above
mentioned model. The agent was introduced into
HabiPro (see Vizcaino et al., 2000; Vizcaino, 2001) a
collaborative distributed system to develop good
progranming habits. This section describes the
experiment designed to test whether the behaviour of the
Simulated Student was adequate, and whether or not it
improved the learning process.

4.1 Objective

The main goal was to observe how the Simulated Student
reacted when faced with certain negative situations and
how the behaviour of the Simulated Student affected the
other students learning. Another objective was to
evaluate the students' assessment of the Simulated
Student's interventions. Given these needs, the aims of
the experiment described here were to explore:

1.- The efficiency of the Simulated Student in detecting
problems in the learning process and its efficacy in
solving these problems.

2.- The effect of the Simulated Student on the students'
learning.

3.- The Students' assessment of the Simulated Student.
This paper focus mainly on the results obtained when the
first aspect was analysed.

4.2 Design of the Experiment

Students had to solve problems using HabiPro in two
sessions. In the first session one group of students used a
version of HabiPro with the Simulated Student and
another group of students used a version without the
Simulated Student. In the second session the students
used the version of HabiPro that they had not used in the
first session. The experiment is a within-subjects design
which means that comparisons are made between two or
more results obtained from different circumstances, but
aways from the same group, thus avoiding the
characteristics of the subjects affecting the results.

4.3 Subjects

Forty-four students enrolled on the first course of the
subject “Introduction to Programming”, in the first year
of the Computers Science degree in Ciudad Real (Spain),
took part in the experiment. Students were randomly
divided into the two sub-groups, one subgroup started the
experiment working with the version of HabiPro
containing the Simulated Student and the other subgroup
with the version without Simulated Student. The sub-
groups were also randomly divided into couples. So we
had two subgroups of eleven pairs.

4.4 Procedure

Each couple taking part in the experiment attended two
sessions about one week apart. The sessions lasted
approximately one hour. Each pair had to solve
programming problems using a different version of
HabiPro in each session. So, the eleven couples that used
the version without the Simulated Student in the first
session used the version with the Simulated Student in
the second session, and vice versa Each student worked
from a computer and they communicated with each other
using the chat window.

4.5 Did The Simulated Student Detect when
Students Needed Help to Solve the Exer cises?

One role of the Simulated Student is to help the students
to solve the exercises when the learners do not have a
high enough level of knowledge or they are lost. When
this happens the Simulated Student gives clues, hints or
proposes solutions close to the real one. In this section
the degree of success of the Simulated Student in playing
the role of adviser is analysed. Before analysing the
results obtained when students used the version with the
Simulated Student we are going to analyse with what
frequency students needed help to solve the problems
when they worked without the Simulated Student.

Data showed that in 59 situations students did not solve
the exercises at the first two attempts. These results will
be commented on later.

Table 4 shows the results obtained when students used
the version with the Simulated student. The logs stored
when students worked with this version were analysed in
order to answer the following questions:
How many times did the Simulated Student
detect that students needed assistance to solve
the exercises?
Did the Simulated Student's intervention help
students to solve the exercises?
Did students always consider the Simulated
Student's advice?
How many interventions by the Simulated
Student were necessary to solve the problem?
Did the Simulated Student act when it was
inappropriate to do so?

The first column in Table 4 indicates each pair's number.
The second column, called "number of times that
students needed help", indicates how many times a pair
had "problems" in solving the exercise. By having
problems, we mean that the couple proposed two wrong
solutions. This information was obtained from the stored
logs. These contained all the answers written in the
answer window (even the incorrect ones), al the
conversation in the chat window and al the Simulated

Student's interventions. The third column indicates how
many times the Simulated Student detected the situation.
The fourth column called "students solved the problem"
shows how many times the Simulated Student's
intervention seemed to help the students to solve the
exercise. The fifth column indicates how many times the
students ignored the Simulated Student's proposal. The
sixth column indicates how many times the Simulated
Student intervened in order to help students. The last
column indicates how many times the Simulated Student
acted unnecessarily, in other words, when the Simulated
Student considered that its hel p was necessary although it
was not.

By comparing the data obtained we oould see that
students had more problems in solving the exercises
when they used the version with the Simulated Student
than in the other case. This fact might be because the
exercises were more difficult and longer in the version
with the Simulated Student.

results show that the Simulated Student always
intervened when it was necessary (100% successful), the
logs indicated that when students proposed a wrong
solution the Simulated Student acted by suggesting a
solution or asking a question related to the solution. The
intervention of the Simulated Student helped students to
solve the problem in 93.8% of the cases, 61 times out of
65. However students ignored the Simulated Student's
advice 6.15% of the time, hence in these cases the
Simulated Student’ sinterventions was not efficient.

From Table 4 it is possible to deduce that one
intervention from the Simulated Student was enough to
help the students to solve the problem. Table 4 shows
more interventions (69) because of the 4 times that the
Simulated Student intervened unnecessarily. In the
following section the possible reasons why the Simulated
Student acted when it was not necessary will be analysed.

The data obtained from the experiment support that the
Simulated Student helps students to solve problems,

Table 4. Number of Times that Students Needed Help
and SS's Interventions

The logs of the version without the Simulated Student
showed that in 68% of the cases students found the
solution at the third or fourth attempt, and most times
they needed to consult the help offered by the system.
However, in the rest of the cases the students, instead of
reflecting upon the problem, started to talk about other
topics. This might be the reason why the students solved
less exercises even though the problems were easier than
in the version with the Simulated Student.

Now the data obtained in the case that the students
used the Simulated Student version are analysed. The

Couple Number of |Detected | Students) Students _ SS. .SSinterven_ed because although students did not know how to attack the
times that S‘,;'Xoiff;;e L%,”SL??;QS nterventjunnecessarily problem in many situations, the Simulated Student's
needed help| interventions helped students to find the solution. In fact,
2 - - 2 Y 2 : as Table 5 shows, students solved more exercises
3 T T T 0 T 0 correctly than when they used the version without the
1 1 1 0 1 0 Simulated Student. So, we can say that the model of the
Z ; g ; é g g Simulated Student is efficient to detect and correct
7 Z Z 3 T Z 0 learning problems.
g g g g g 3 (1) Mann-Whitney Test of both Session
10 2 2 2 0 3 1 SESSION || N Mean Rank Sum of Ranks
11 5 5 4 1 5 0 .
12 2 2 2 0 2 0 Without
13 7 7 7 0 2 0 Simulated || 22 18.05 397.00
14 2 2 2 0 2 0 Student
15 2 2 2 0 0 0
16 5 5 5 0 3 1 With
17 5 5 5 0 5 0 1
. - - - 5 - 5 Simulated || 22 26.95 593.00
19 2 2 2 0 2 0 Student
20 3 3 3 0 4 1
21 4 4 4 0 4 0 TOtaI 4
22 5 5 5 0 5 0 Table5. Mean Rank of exercise results with and
N 22 22 22 22 22 2 without Simulated Student
Sum 65 65 61 4 69 4

5Discusson and Future Work

From the experiment it was observed that the Simulated
Student always intervened when students could not solve
the exercises. An example of the Simulated Student's
intervention is shown in the following conversation. In
this case the Simulated Student is proposing a solution. It
does not impose its idea, leaving the students free to
check the proposal or to ignore it. The Simulated Student
is Student 3

Studentl: | don't know how the "loop for" works.
Student2: Yes, | see that, we have tried a lot of possible
solutions and none of them are correct.

Student3: | think that the index of the array must be 0.
Let'stry j=0.

Studentl: Yes!!! Now | remember that the index of an
array startswith 0 in Java.

On the other hand, although the Simulated Student
intervened when it was necessary, it also acted four times
when it was unnecessary. When and why did this occur?
The Simulated Student has no natural language capability
hence it cannot understand the chat conversation. The
Simulated Student uses the information from the answer
windows and the number of times that students check a
solution in order to decide when to act. So the Simulated
Student may propose a solution that the other student has
just written in the chat window. This would be an
unnecessary intervention and this is what in fact
happened on the four occasions that the agent intervened
inadequately. Students might think that Student3's
behaviour was strange because it proposed the same idea
that had already been mentioned in another way.
However, in most cases students thought that Student3
wrote the sentence in the chat window at the same time
as Student2, but Student2'sintervention arrived earlier.

Everybody who has used a chat application connecting
two or more people at the same time knows that such a
chat conversation is not as logical as an ora
conversation, since, except in the applications that use a
turn talking protocol, chat users are not aware whether
the others are writing at the same time, and neither of
them knows in which order interventions will arrive. So,
in this case the expectations of working in a chat helped
usto mask apossible defect of the Simulated Student.

To prevent the Simulated Student from repeating
something that has already been said we are exploring the
use of techniques developed in the field of natural
language processing. We have discussed this issue with
CICESE, a Mexican research centre, which is in the
process of analysing the conversations obtained from our
experiments, in order to adapt a syntactic analyser for
Spanish that thy have developed to help the Simulated
Student achieve a better understanding of the
conversations (Ibarra, Favelaand L épez, 2000).

References

Anderson, J. R. (1983). The architecture of cognition.
Cambridge, MA: Harvard University Press.

Anzai, Y., and Simon, H. A. (1979). The theory of
learning by doing. Psychological Review, 86, 124-

140.

Ayala, G, and Yano, Y. (1995) Interacting with a
Mediator Agent in Collaborative Learning
Environments. In Y. Anzai, K. Ogawa and H. Mori
(Eds.)) In Symbiosis of Human and Artefact: Future
Computing and Design for Human-Computer
Interaction. Advances in Human Factors/Ergonomic,
Elsevier Science Publishers, pp: 895-900.

Constantino-Gonzélez, M. A., and Suthers, D. D., 2000.
A Coached Collaborative Learning Environment for

Entity-Relationship Modeling. In G. Gauthier, C.
Frasson and K. VanLehn (Eds.). Proceedings of ITS
2000. Springer, pp: 324-332.

Doak, E.D., and Keith, M. (1986). Simulation in teacher
education: The knowledge base and the process.
Tennessee Education, 16, 2, 14-17.

Goodman, B., Soller, A., Linton, F., and Gaimari, R.

(1998). Encouraging Student Reflection and
Articulation using a Learning Companion.
International Journal of Artificial Intelligencein
Education, 9(3-4).

Grudin, J (1994). Groupware and Socid Dynamics:
Eight Challenges for Developers. Communications of
the ACM 37 No. 1, 92-105.

Hoppe, H.U. (1995) The Use of Multiple Student
Modelling to Parameterize Group Learning. In J.
Greer (Ed.) Proceedings of AI-ED 95. Washington,
USA.

Ibarra, M.A., Favela, J. , and Lépez, A. (2000) Syntatic-
conceptual Analysis of Sentencesin Spanish Using a
Restricted Lexicon for Disambiguation. MICAI2000:
Advances in Artificial Intelligence, Cairo O., Sucar,
L., and Cantu, F. (Eds.) LNAI1793, Springer, pp 538-
547.

Johnson, W.L., Richel, J., Stiles, R., and Munro, A. ,
1998. Steve: Integrating pedagogical agents into
virtual environments. SIGART Bulletin 8, pp. 16-21

Johnson,W.L.,(1999) Pedagogical Agents.
http://www.isi.edu/isc/carte/pedagogical _agents.html.

Luckin, R, and du Boulay, B. (1999). Ecolab: The
Development and Evaluation of Vygotskian Design
Framework. International Journal of Artificial
Intelligence and Education, 10 (2), 198-220.

Ohlsson, S, and Rees, E. (1991). The function of
conceptual understanding in the learning of arithmetic
procedures. Cognition and Instruction, 8, 103-179.

Paiva, A., (1997). Learner Modelling for Collaborative
Learning Environments. In du Boulay and Mizoguchi
(Eds.), Proceedings of AI-ED 97. Kobe, Japan, IOS
Press, 215-230.

Self, J. (1994).Formal Approaches for Student
Modelling. In Greer, Jand McCalla (Eds.) Student
Modelling: the Key to Individualised Knowledge-
Based Instruction. Springer-Verlag.

Soller, A., Goodman, B., Linton, F., Gaimari, R. (1998).
Promoting Effective Peer Interaction in an Intelligent
Collaborative Learning System. Proceedings of the 4"
International Conference on Intelligent Tutoring
Systems (ITS 98). San Antonio, Texas, pp 186-195.

VanLehn, K., Ohlsson, S, & Nason, R. (1994).
Applications of Simulated Students: An Exploration.
Journal of Artificial Intelligence in Education, 5(2),
135-175.

VanLehn, K. (1988) Student Modelling. In Polson, C.,
Richardson, J.J.,(Eds.) Intelligent Tutoring Systems,
pp 55-77.

Vizcaino, A., Contreras, J., Favela, J, and Prieto, M.
(2000). An Adaptive, Collaborative Environment to
Develop Good Habits in Programming. In
Proceedings of the 5" International Conference on
Intelligent Tutoring Systems. Montreal, Canada, pp
262-271.

Vizcaino, A. (2001). Can a Simulated Student Avoid
Negative Situations in Collaborative Environments?.
In proceedings of the First European Conference on
Computer -Supported Collaborative Learning.
Dillenbourg, P., Eurelings, A. , Hakkaraine, K. (Eds.),
Maastricht, the Nerthelands, marzo 2001, pp 704-705.

Webb, N. (1989). Peer Interaction and Learning in Small
Groups. International Journal of Educational
Research, 13, 21-40.

