
An Approach of Implementing General
Learning Companions for Problem Solving

Chih-Yueh Chou, Tak-Wai Chan, and Chi-Jen Lin

Abstract—Adding a learning companion, a computer simulated social agent, to a computer based learning system can enhance its

educational value by enriching the way in which the computer and the user interact. This paper presents a novel simulation approach,

named General Companion Modeling (referred to hereinafter as GCM), to implement learning companions in a general problem-

solving domain. DwestAgent, a learning companion system, is also implemented using the GCM approach to demonstrate the

feasibility of the proposed approach. In addition, the approach can help developers of learning companions clarify implementation

issues and requirements involved in simulating 1) domain competencies, 2) learning competencies, 3) behaviors as a peer tutor, and

4) behaviors as a peer tutee of a learning companion. Using GCM, one can simulate learning companions with various characteristics

by adjusting parameters within the proposed simulation framework.

Index Terms—Learning companion, educational agent, social learning, collaborative learning, computer assist learning, problem

solving, simulation.

æ

1 INTRODUCTION

COMPUTER-BASED learning systems provide an attractive
environment for learning skills of problem solving.

Students can do problem-solving exercises as well as access
their learning data. With proper designs, these learning
systems can assist students in forming learning strategies
and structuring their knowledge. In addition, adding a
computer-simulated tutor to guide a student’s learning can
enhance the educational value of a learning environment.
For example, Burton and Brown [1] developed a computer
board game system, named West, with a coach. West was
designed for practice arithmetic skills. That investigation
also proposed several principles to guide tutoring and
discussed how to implement the adopted philosophy,
diagnostic modeling, and tutorial strategies of the system.
West is a typical intelligent tutoring system (ITS) that
contains a computer tutor to observe and guide the
student’s movements.

Several researchers have conferred on the role of the

computer as a collaborative partner of the user, not only an

authorized teacher [2], [3], [4], [5]. Chan et al. developed a

distributed learning companion system (LCS), named

Distributed West [6], which is a reimplementation of West.

Distributed West, a distributed system, consists of two

connected computers so that students can learn collabora-

tively and/or competitively at different locations. In

addition, a student can interact with a computer companion

and/or a computer teacher in a centralized environment.

Distributed West contains 768 possible learning models

based on different combinations of agents and dimensions

of factors, such as role of the computer teacher, role of the

learning companion, learning format, relationship, and
level of the agents. The computer teacher may function as
a tutor, coach, critic, or evaluator. An evaluator is
nonadaptive while a tutor, coach, or critic can be either
adaptive (sensitive to the student’s performance history) or
nonadaptive.

As a computer-simulated student, the learning compa-
nion can compete against or collaborate with human
students [4], [7]. The learning companion can function as
a competitor, tutee, or tutor to provide users with a social
learning environment. The learning companion can be used
to encourage user reflection and articulation [8], increase
the user’s motivation [9], support learning activities of
“reciprocal tutoring” [10], [11], or support strategy of
“learning by disturbing” [12] or “learning by teaching”
[13], [14], [15], [16]. Additionally, Scott and Reif indicated
that reciprocal tutoring with a learning companion is nearly
as effective as individual tutoring by human expert teachers
and more effective than a well-taught class [11].

Among the 768 possible models of Distributed West,
three models are implemented and evaluated in this study.
In Model one, two students collaborate with each other in
competing against a computer opponent. In Model two, a
student competes against another one under the super-
vision of a computer teacher. Model three resembles Model
two, except no computer teacher is involved. In the three
models, the learning companion is implemented only as a
competitor, not as a collaborator. This study implements the
learning companion not only as a competitor, but also as a
collaborator. In doing so, two collaborative learning models
are proposed: 1) the user functions as a peer tutor, helping a
learning companion to compete against another learning
companion, and 2) the user functions as a peer tutee, which
is under the supervision of a learning companion to
compete against another learning companion. Either a
learning companion or a human student, a peer tutor,
guides a peer tutee. The peer tutee can also be a learning

1376 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

. The authors are with the Institute of Computer Science and Information
Engineering, National Central University, Chung-Li, Taiwan, R.O.C.
E-mail: {yueh, chan, zen}@src.ncu.edu.tw.

Manuscript received 3 May 1999; revised 28 Feb. 2001; accepted 2 Mar. 2001.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 109743.

1041-4347/02/$17.00 ß 2002 IEEE

companion or a human student. A peer tutor functions
exactly like a tutor, except that the peer tutor is not an
expert and may make erroneous recommendations. There-
fore, the peer tutee must determine whether the peer tutor’s
recommendation is correct.

Using a learning companion, not a human, to compete or
collaborate with a user has two advantages. First, the
system can control the competency and behavior of the
learning companion for a particular pedagogical strategy.
Hietala and Niemirepo suggested that a group of learning
companions with heterogeneous domain competency
placed at a user’s disposal increases the user’s motivation
[9]. Goodman et al. designed a learning companion, Lucy,
whose behavior is controlled for encouraging user reflection
and articulation [8]. Second, the system is available to the
user to determine the learning companion’s competency
and behavior. Hietala and Niemirepo demonstrated that
different users prefer different learning companions [9]. In
their experiments, the system provides two strong learning
companions with an expert’s competency and two weak
learning companions with a nonexpert’s competency. The
extraverts and subjects with a lower IQ preferred asking the
weak companions, while the introverts and subjects with a
higher IQ preferred asking the strong companions.

However, the implementation issues of a learning
companion for different learning activities and pedagogical
strategies have seldom been addressed. This study ad-
dresses the following implementation requirements and
related issues to simulate learning companions. An ap-
proach, named GCM, is also proposed to implement
various learning companions to satisfy the needs of various
students.

1. Domain competency. The domain competency of a
learning companion can be an expert, average
student, or novice. The system must simulate how
the learning companion solves problems. A learning
companion, which is not an expert, may make
mistakes or give erroneous recommendations. The
following question arises: Can one implement the
different domain competency levels of learning
companions by setting and adjusting the attribute
values of these learning companions? In GCM,
simulating a learning companion’s domain compe-
tency is the basis to simulate other characteristics of
the learning companion.

2. Learning competency. A learning companion can
learn when competing against and collaborating with
the user or another learning companion. Having
learned something, the learning companion should
perform better or make fewer errors the next time on
the same learning task. The system must determine
“whether the learning companion will learn” and
“when and how the learning companion learns.”

3. Behavior of a peer tutor. When the user requests an
opinion from the learning companion, the peer
tutor can refuse such requests or provide various
opinions. In addition, the peer tutor can provide
opinions as an adaptive tutor, nonadaptive tutor,
or evaluator. Therefore, the following question
arises: How to simulate different behaviors of a

learning companion in order to produce different
peer tutors?

4. Behavior of a peer tutee. As a peer tutee, the learning
companion solves problems, requests recommenda-
tions, and responds to the peer tutor’s recommenda-
tions. In addition to solving a problem, the system
must simulate “when the learning companion asks
for recommendations” and “how the learning
companion considers and responds to the peer
tutor’s different recommendations’.”

The rest of this paper is organized as follows: Section 2
describes DwestAgent, an LCS implemented using the
GCM approach. DwestAgent and its three learning models
are used as illustrative examples to demonstrate the
feasibility of GCM and to discuss the implementation
requirements and related issues to simulate learning
companions. Next, Sections 3, 4, 5, 6, and 7 present GCM’s
implementation scheme on steps and architecture, learning
companions’ domain competency, learning ability, behavior
of a peer tutor, and behavior of a peer tutee, respectively.
Section 8 describes a preliminary evaluation of the system.
Conclusions are finally made in Section 9.

2 DWESTAGENT AND THREE LEARNING MODELS

DwestAgent, an LCS, is implemented using the GCM
approach and in Java and Lisp. DwestAgent is used as an
example not only to demonstrate the feasibility of GCM, but
also to discuss the implementation requirements and
related issues to simulate learning companions. DwestA-
gent provides three learning models: The user is a
competitor without a collaborator, peer tutee, or peer tutor,
respectively. In Distributed West, the user keys in a natural
language to communicate with a human collaborator. In
DwestAgent, the user communicates with the learning
companion by using buttons or menus. The user also uses a
calculator-like interface to compose the expression. These
buttons, menus, and calculator-like interface provide the
user with scaffolding tools to reduce the learning task
complexity [10]. Scaffolding conventionally refers to the
support that a teacher provides in helping a student
implement a task [17]. While employed in a computer-
based learning environment, scaffolding also refers to the
tools that a computer offers. These scaffolding tools also
reduce the complexity of simulating learning companions.

2.1 Model One: Competitor without Collaborator

In Model one, the user competes with a learning companion
and with no collaborator (Fig. 1). This model resembles
Model three of Distributed West. The difference is that the
competitor in DwestAgent is a learning companion, not a
human.

CHOU ET AL.: AN APPROACH OF IMPLEMENTING GENERAL LEARNING COMPANIONS FOR PROBLEM SOLVING 1377

Fig. 1. Model one: Competitor without a collaborator.

The system randomly generates three numbers between
zero and nine. These three numbers are displayed in three
buttons. The usable operators are “+,” “-,” “�,” and “/.”
The user pushes buttons representing numbers and
operators to compose an expression (Fig. 2). The expression
must include the three numbers exactly once. When the
user pushes the button of a number, the number is added to
the expression and the button is disabled to prevent the
user from using the number again. The user can use an
operator repeatedly, i.e., “1+2+3” is allowed. When the user
completes an expression, the “Go” button is enabled. The
user can then push the “Go” button and the outcome of the
expression determines the user’s move. The user and the
competitor move in turns. The player reaching the final
destination first wins the game. The user can see the
numbers his/her opponent obtained and watch how his/
her opponent compose an expression from those numbers.
The “Clear” button is provided for the user to recompose an
expression when the user has to.

The game has three special moves.

1. Shortcut. The board contains three shortcuts. A
player moving onto a shortcut moves forward along
the shortcut. The first shortcut is a jump from
position six to position 15. The second one is a jump
from 23 to 36. The third one is from 47 to 55.

2. Town. A player moving into a town jumps to the
next town (10 more steps) as a bonus.

3. Bump. If a player moves to an opponent’s exact
location, the opponent is moved backward 10 steps.

2.2 Model Two: Peer Tutee

In Model two, the user collaborates with a learning
companion to compete against another learning companion.
The user functions as a peer tutee to control the buttons in
order to compose an expression, while the learning
companion collaborator functions as a peer tutor to provide
recommendations (Fig. 3). In this model, the peer tutor, who
is a learning companion, resembles a computer teacher
when the peer tutor’s competency is an expert. This model
resembles Model two of Distributed West, except that the
competitor is a learning companion instead of a human.

When the peer tutor’s competency is not an expert, the peer
tutor may give erroneous recommendations. Under this
circumstance, the peer tutor resembles a troublemaker
whose role is to interfere with the user deliberately as a
strategy of “learning by disturbing” [12]. However, the
troublemaker aims to make an error according to the user’s
confidence, while the peer tutor in DwestAgent acts based
only on its domain competency and characteristics.

The interface of Model two resembles Model one (Fig. 4).
The user pushes buttons to compose an expression.
However, before acting, the user must request the peer
tutor’s recommendations at least once. This limitation
allows the peer tutor to offer recommendations. Otherwise,
the user can complete the game without requesting the peer
tutor. The user can modify the expression based on the peer
tutor’s opinion, ask again, or act while neglecting the peer
tutor’s clue.

2.3 Model Three: Peer Tutor

In model three, the user collaborates with a learning
companion to compete against another learning companion.
The user functions as a peer tutor to guide the learning
companion. Meanwhile, the learning companion functions
as a peer tutee, which operates three numbers to compose
an expression under supervision of the user (Fig. 5). In this
model, the user learns by teaching the learning companion.
This model resembles the “learning by teaching” approach
investigated by other researchers whose model has no
competitor [13], [14], [15].

The user observes the numbers and expressions, which
the peer tutee makes. When the peer tutee requests a
recommendation, the user chooses a recommendation from
a menu and sends it to the peer tutee (Fig. 6). The user can

1378 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

Fig. 2. Interface of model one.

Fig. 3. Model two: peer tutee.

Fig. 4. Interface of model two.

respond only passively to a clue request of the peer tutee
and cannot actively interrupt the peer tutee to offer
recommendations. If the peer tutee asks again, the user
chooses another recommendation.

Opinion items on the menu are

1. No opinion or clue, e.g., “No comment.”
2. A positive comment, e.g., “Agree.”
3. A negative comment, e.g., “I think that this is not the

best move.”
4. A clue with respect to an operator pattern, e.g., “I

think it is better to use A+B*C.”
5. A clue with respect to a special move, e.g., “I think it

is better to use Town.”
6. A direct recommendation with respect to a specific

move or expression, e.g., “I think it is better to use
1+2�3.”

2.4 Variations of the Three Learning Models

DwestAgent provides three learning companions, i.e., John,
Brown, and Mary, for the user to choose. They represent an
expert, an average student, and a novice, respectively. Each
learning companion can function as a competitor, peer
tutor, or peer tutee. The user can select learning companions
and their roles and then choose a learning model from the
three give learning models.

The variations in learning companions’ roles and domain
competency produce many variations of the three learning
models. Table 1 classifies the DwestAgent’s learning
companions according to their roles and domain compe-
tencies, and lists their similar agents in other systems. When
functioning as a competitor, the learning companion is
similar to learning companions of Contest-kids [18] and
Distributed West. When functioning as a peer tutor and its

proficiency is an expert, the learning companion is similar
to the tutor of typical ITSs, strong companions of
EduAgents [9], as well as the learning companion of RTS
[10] and PALs [11]. When functioning as a peer tutor and its
competency is not an expert, the learning companion is
similar to weak companions of EduAgents, and the learning
companion of Integration-kid [7], Troublemaker [12], and
LuCy [8]. When functioning as a peer tutee and its
proficiency is an expert, the learning companion is similar
to a demo system. When functioning as a peer tutee and its
proficiency is not an expert, the learning companion is
similar to the agent of DENISE [14], STEPS [15], RTS,
LECOBA [16], and PALs. In the following sections,
DwestAgent is used as an example to present GCM.

3 STEPS AND ARCHITECTURE

GCM uses six steps to simulate the characteristics of a
learning companion. Steps one to three resemble each other
with respect to constructing a typical ITS. Therefore, most
techniques used in ITSs can be applied in GCM to
implement LCSs.

1. Collect the required characteristic data of a set of
students in their learning process. The data include
problem solving states, paths, responses, and inter-
actions;

2. Select an appropriate data representation to repre-
sent the user, i.e., a particular student;

3. Simulate an expert, including problem solving and
interaction behavior;

4. Generalize the expert to simulate learning compa-
nions with different levels of domain competency
and roles;

5. Initialize attribute values (parameters for simulation)
of each learning companion to determine its char-
acteristics and roles; and

6. Modify the attribute values of each learning compa-
nion to change itscharacteristics at an appropriate
time.

GCM architecture consists of four main components: beha-
vior module, domain module, user model, and learning
companion pattern [19] (Fig. 7). The user model stores the
user’s status observed by a system. The learning companion

CHOU ET AL.: AN APPROACH OF IMPLEMENTING GENERAL LEARNING COMPANIONS FOR PROBLEM SOLVING 1379

Fig. 5. Model three: Peer tutor.

Fig. 6. Interface of model three.

TABLE 1
Classification of Learning Companions of DwestAgent

pattern stores the learning companion’s characteristic data.
The domain module is responsible for simulating the domain
competency of a learning companion. In addition, the
behavior module is responsible for simulating the behavior
of a learning companion. In DwestAgent, the domain module
and the behavior module include sets of heuristic rules by
taking the data of a learning companion pattern as para-
meters. Varying the data can produce various learning
companions for different learning models. Setting multiple
learning companion patterns can simulate multiple learning
companions in an LCS.

4 IMPLEMENTING THE DOMAIN COMPETENCY OF

LEARNING COMPANIONS

Simulating the domain competency of learning companions
forms the basis of behavior simulation. The domain
competency includes what a learning companion knows,
the proficiency of a learning companion in domain related
skills, and how a learning companion solves problems. The
first two competencies can be established and stored in the
learning companion pattern. GCM adopts the method of
General Problem Solver (GPS) [20] and modifies it to satisfy
the end of simulating problem solving competency of
learning companions. Extensively applied to simulate
human’s problem solving behavior, GPS captures pro-
blem-solving behavior in a data structure such as problem
states and operators. Moreover, GPS attempts to transform,
with the appropriate operator(s), the current problem state
into the goal state (Fig. 8). Many possible operators are
available for a state to reach its neighboring states. The
general heuristic selects the operator that reduces the
difference between the current state and the goal state.
GPS repeats the process until it reaches the goal state.

GPS has three procedures:

1. identify all neighboring states, which can be reached
from the current state through the operators;

2. evaluate all these neighboring states; and
3. select the operator and transform the current state

into the state with optimal evaluated value.

To simulate problem-solving processes of various learning
companions, GCM makes two modifications on these three
procedures. The modifications are based on two theories:
overlay model and bug model, respectively. The theories
are extensively used in user modeling. With different
applications, the theories are applied herein to simulate
learning companions. The underlying premise of the over-
lay model is that the knowledge or problem solving of a
user is treated as a subset of that of an expert [21]. The
theory is applied herein to simulate the problem solving of
a learning companion by selecting a subset of expert
problem solving. The bug model is a fixed collection of
bugs and misconceptions to facilitate the detection of the
status of users in ITSs [22]. This theory is applied herein to
simulate the errors of the learning companion. If not
proficient in some knowledge, the learning companion
may fail when applying the knowledge.

4.1 Modification One: Applying the Overlay Model

The possible problem solving paths of a learning compa-
nion are a subset of those of an expert. A learning
companion may neglect some possible operators of the
current state owing to the learning companion’s lack of
proficiency with respect to the operators. If the learning
companion neglects some operators, the first procedure
does not consider some neighboring states. One or more
proficiencies may be available for mastering an operator.
Whether the learning companion neglects an operator
depends on levels of corresponding proficiencies of the
companion.

To implement modification one, a filter is added to each
operator to determine whether a learning companion
considers the operator. The levels of related proficiencies
of a learning companion determine whether the operator
will pass the filter. The inability of the operator to pass the
filter implies that the learning companion neglects the
operator. The dashed line arrow in Fig. 9 indicates that the
learning companion neglects problem states S2 and S3.

An example of neglecting some states is given as follows:
In a West game, the position of a learning companion is at
five and its opponent is at 15 (Fig. 10). This situation is
denoted as (5,15). The learning companion obtains three
numbers, i.e., one, two, and three, from the computer.
Assume that the level of the learning companion’s
proficiency with respect to operator pattern “1 + 2 + 3” is
0.8. The possibility of passing the filter is 80 percent, thus
allowing the system to generate a random number to

1380 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

Fig. 7. GCM architecture.

Fig. 8. Schematic diagram of General Problem Solver.

Fig. 9. Addition of a filter to neglect some states.

determine whether the learning companion considers the
operator. In this case, the learning companion considers the
operator “1 + 2 + 3.”

4.2 Modification Two: Applying the Bug Model

A learning companion may incorrectly evaluate problem
states in the second procedure and, therefore, choose either
a suboptimal or wrong state. Whether a state is inaccurately
evaluated depends on the related proficiencies of the
learning companion.

To implement modification two, each neighboring state
is given an evaluated value with respect to the difference
between the state and goal state. Each state may have
different possible evaluated values: the value evaluated by
an expert and some other inaccurately evaluated values.
These inaccurately evaluated values are generated because
some related proficiencies of the learning companion are
inadequate. Which evaluated value is selected for a state is
calculated by the learning companion’s related proficiencies
with respect to evaluating the state. The problem state S1 in
Fig. 11 has two possible evaluated values: EV1 and EV2. The
learning companion selects EV1 as the evaluated value of
problem state S1.

An example of evaluating states is given as follows: In a
West game, a learning companion’s position is at five, and
its opponent is at 15 (Fig. 12). The related proficiency with
respect to correctly evaluating state (20,15) is “town.”
Assume that the level of the learning companion’s
proficiency with respect to “town” is 0.7. A 70 percent
likelihood arises that the learning companion evaluates the
state the same as an expert and a 30 percent likelihood to
evaluate the state without considering “town.” Based on
this possibility, the system generates a random number to
determine which evaluated value the learning companion
takes. Another example is given as follows: The related
proficiencies with respect to correctly evaluating state (6,15)
are “shortcut” and “bump.” In this case, the learning
companion must consider “shortcut” first. The condition of

“bump” can then be satisfied and may be considered.
Assume that the levels of the learning companion’s
proficiencies with respect to “shortcut” and “bump” are
0.6 and 0.8, respectively. A 48 percent likelihood arises that
the learning companion evaluates the state the same as an
expert, 12 percent likelihood to evaluate the state consider-
ing “shortcut” and without considering a “bump,” and 40
percent likelihood to evaluate the state without considering
a “bump.” Based on this possibility, the system generates a
random number to determine which evaluated value the
learning companion takes.

In the third procedure, the learning companion selects
the neighboring state with the best-evaluated value to
move. The strategy is to select a move, thus minimizing the
distance from the goal and maximizing the distance the
individual is ahead of an opponent. If several neighboring
states have the same evaluated value, the learning
companion must choose one to move. Two heuristics are
proposed as follows:

1. Random. Randomly select one state from these
neighboring states.

2. Favor. The learning companion may favor one of
these states. Compare the likelihood of passing the
operators, which reaches these neighboring states.
Select the neighboring state with the highest possi-
bility of passing the operator as its favorite state.

This novel approach to simulate the learning task allows
one to take the learning companion pattern as parameters to
simulate problem solving. Adjusting the data of the
learning companion pattern varies the learning compa-
nion’s problem solving competency and behavior. Addi-
tionally, multiple learning companion patterns can be
established to yield several learning companions in a
system.

5 IMPLEMENTING LEARNING COMPETENCY OF

LEARNING COMPANIONS

A learning companion may learn from its competitor, peer
tutor, and peer tutee. If learning something, the learning
companion should improve next time on the same learning
task. To implement the learning competency of a learning
companion, the system must have mechanisms to deter-
mine when and how the learning companion learns. Two
approaches are available to implement the learning compe-
tency of learning companions [7]: 1) applying machine
learning methods to construct new knowledge or modify
existing knowledge and 2) pretending or simulating to

CHOU ET AL.: AN APPROACH OF IMPLEMENTING GENERAL LEARNING COMPANIONS FOR PROBLEM SOLVING 1381

Fig. 10. An example of neglecting some states.

Fig. 11. Different evaulated values in a state.

Fig. 12. An example of different evaluated values in a state.

learn, i.e., the increase of the learning companion’s knowl-
edge or proficiencies is directly coded as part of the learning
companion. DwestAgent adopts the simulation approach.
The learning companion pattern stores the learning compa-
nion’s proficiency levels in all special moves and operator
patterns. Increasing the related proficiencies of a learning
companion simulates the learning outcome of the learning
companion. Each learning companion has three numbers to
represent the learning competencies from competitor, peer
tutee, and peer tutor, respectively. The learning competency
is the increased amount of the related proficiencies when
the learning companion learns. Setting a learning compa-
nion’s learning competencies as zero implies that the
learning companion does not learn anything.

When a competitor solves a problem, the learning
companion also considers how to solve the problem if it is
in the position of the competitor. Next, the learning
companion compares its solution with the user’s solution.
If the user’s solution is better, the system increases the
learning companion’s related proficiencies to simulate its
learning. Related proficiencies include the operator pattern
and tactics used in the better solution. Learning from a peer
tutee resembles learning from a competitor.

When a peer tutor makes recommendations to a learning
companion, the learning companion reconsiders its solution
based on the tutor’s recommendations. The learning
companion learns whether if it discovers previous mistakes
or confers with the tutor’s recommendations. Section 7
proposes heuristics rules in terms of how a learning
companion reconsiders, responds, and learns based on the
tutor’s various opinions.

6 IMPLEMENTATION OF PEER TUTOR

When functioning as a peer tutor, a learning companion
must provide recommendations to the user. The learning
companion can act as an evaluator, nonadaptive tutor, or
adaptive tutor [6]. An evaluator simply evaluates the user’s
move. A nonadaptive tutor offers recommendations or
strategies according to the user’s current state and moves,
whereas an adaptive tutor is also sensitive to the user’s
history. The following heuristic rules adhere to some of the
principles, which are proposed by Burton and Brown to
design a computer tutor [1].

6.1 Evaluator

An evaluator provides the tutee with either a positive or
negative comment. In Heuristic Rule 1, the learning
companion functions as an evaluator to effectively respond
to the tutee’s request for a recommendation.

Heuristic Rule 1: An evaluator’s strategy.

1. Provide “no comment” when the user requests a
recommendation without attempting any solution.

2. Provide a positive comment when the learning
companion regards that the move of the user is the
best.

3. Provide a negative comment when the learning
companion regards that the move of the user is not
the best.

4. Do not provide other recommendations even if the
user requests again.

6.2 Nonadaptive Tutor

A nonadaptive tutor provides a tutee with recommenda-
tions based on the tutee’s current status. In Heuristic Rule 2,
the learning companion functions as a nonadaptive tutor,
which provides opinions based on four successive levels of
recommendations from general to specific. The learning
companion provides a recommendation of level one for the
first request. If the user asks again, the learning companion
provides recommendations of level two or level three.
Finally, the learning companion provides recommendations
at level four.

Heuristic Rule 2: A nonadaptive tutor’s strategy.

1. Level one. Provide a positive comment when the
learning companion regards the move of the user is
the best. Otherwise, provide a negative comment.

2. Level two. Provide a clue with respect to a special
move if the best move uses a special move.
Otherwise, provide clues at level three.

3. Level three. Provide a clue with respect to the
operator pattern of the best move.

4. Level four. Provide a direct recommendation with
respect to a specific expression of the best move.

6.3 Adaptive Tutor with a Domain-Based User
Model

An adaptive tutor provides the tutee with recommenda-
tions, based not only on the tutee’s current state, but also on
the tutee’s learning history. Each learning companion can
construct its own user model or share the same user model
[23]. The learning companion provides recommendations
based on its user model with respect to the user. The user’s
domain weaknesses and independence status are modeled
by the user model. The system then records the user’s
patterns of moves and used special moves. Next, the system
compares these moves to the domain expert’s move to
indicate how many times the user used and missed some
moves and special moves [1]. For example, the user uses
operator pattern “A + B + C” and special move “shortcut,”
the system increases both the user’s used times of pattern
“A + B + C” and special move “shortcut.” But, the expert
uses pattern “A + B � C” and uses special move “town,”
then the system increases both the user’s missed times of
pattern “A + B � C” and special move “town.” These used
and missed times of patterns and special moves indicate the
user’s favor and weakness. In Heuristic Rule 3, the learning
companion provides recommendations based on the user’s
domain weaknesses. The Heuristic Rule 3 is modified from
Rule 2. However, when the best move uses a tactic, the
learning companion takes the user’s weaknesses into
account.

Heuristic Rule 3: An adaptive tutor’s strategy (with a

domain-based user model):

1. Level one. Provide a positive comment when the
learning companion regards that the move of the
user is the best. Otherwise, provide a negative
comment.

2. Level two. Provide a clue with respect to an operator
pattern or a tactic according to the current state and
the user’s weakness.

1382 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

3. Level three. Provide a direct suggestion with respect
to a specific expression of the best move.

6.4 Adaptive Tutor with an Independence Model

The learning companion can also offer a recommendation
based on the user’s independence status. The independence
status relates to the perceived feeling of needing, or not
needing, as well as the tutor’s assistance to accomplish the
learning task [24]. The pedagogical strategy aims to increase
the user’s independence. Moreover, the system constructs
an independence model of the user according to the
interaction between the learning companions and the user.

Heuristic Rule 4: An adaptive tutor’s strategy (with an
independence model).

1. Choose “no comment” if the learning companion
regards the user’s independence as low.

2. Provide a recommendation based on Heuristic Rules
1, 2, or 3, otherwise.

According to Heuristic Rule 4, controlling the indepen-
dence threshold of a learning companion can manipulate
the recommendation-offering behavior of a learning com-
panion. Each learning companion has its own indepen-
dence threshold to determine whether the independence
status of the user is high or low. A learning companion with
a low independence threshold regards all users’ indepen-
dence as high, thus seldom or never rejecting request and
always providing recommendations. A learning companion
with a high independence threshold regards all users’
independence as low and, therefore, does not provide
recommendations.

In addition, the independence threshold can be accom-
panied by the independence modelling method to control
the recommendation-offering behavior of a learning com-
panion. For example, West adheres to the following
principle: “Do not tutor on two consecutive moves, no matter
what” [1]. A learning companion can adhere to this principle
by setting the independence threshold of the learning
companion to 0.5, adopting Heuristic Rule 4 as a recom-
mendation-offering strategy, and adopting Heuristic Rule 5
as an effective means of modelling the user’s independence.
When the learning companion provides the user with
recommendations, the system models the user’s indepen-
dence status as zero. The learning companion then regards
the user’s independence as low. Therefore, the learning
companion rejects the user’s request on the next move and
does not tutor on two consecutive moves. When the
learning companion rejects the user’s request, the system
models the user’s independence status as one. The learning
companion then regards the user’s independence as high.
Therefore, the learning companion tutors the user on the
next move.

Heuristic Rule 5: Modeling the user’s independence.

1. When the learning companion rejects the user’s
recommendation request, i.e., the learning compa-
nion gives “no comment,” the system models the
user’s independence status as one.

2. When the user asks for a recommendation and the
learning companion gives any comment or recom-
mendation, the system models the user’s indepen-
dence status as zero.

The learning companion can model the user’s indepen-
dence by not only whether to offer recommendations or not,
but also what to offer. The greater the detail that the
learning companion provides implies a lower independence
status of the user. For example, the system assigns a
number from zero to one to model and represent the
independence status of a user. Therefore, the system adopts
Heuristic Rule 6 to model the user’s independence.

Heuristic Rules 6: Modeling the user’s independence.

1. When the learning companion rejects the user’s
recommendation request, the system increases the
user’s independence status by 0.5.

2. When the learning companion gives a positive
comment, the system decreases the user’s indepen-
dence status by 0.1.

3. When the learning companion gives a negative
comment, the system decreases the user’s indepen-
dence status by 0.2.

4. When the learning companion offers a recommenda-
tion with respect to an operator pattern or a special
move, the system decreases the user’s independence
status by 0.4.

5. When the learning companion offers a recommenda-
tion with respect to a specific move or expression,
the system decreases the user’s independence status
by 0.6.

The learning companion can adopt the “learning by
disturbing” strategy to function as a troublemaker [12]. The
learning companion intentionally gives an erroneous
recommendation. Aimeur et al. [12] suggested the follow-
ing: “This strategy is useful only for learners who have already
acquired a minimum amount of knowledge and should not be used
on novices since it could discourage them.” In addition,
adopting the strategy may confuse the novices. The system
should consider the user’s confidence to determine when to
interfere with the user.

7 IMPLEMENTATION OF PEER TUTEE

When a learning companion functions as a peer tutee, the
system must simulate how it solves problems, when it
requests a recommendation, and how it responds to the
various hints from the peer tutor. In Section 4, we propose
how to implement learning companion’s problem solving
capability. The learning companion asks the peer tutor for
recommendations in the following situations:

1. The learning companion does not know what to do.
The only option available to the learning companion
is to ask the peer tutor for assistance.

2. The learning companion is required to ask the peer
tutor for an recommendation at least once after
completing a expression.

3. The learning companion who does not understand
the peer tutor’s recommendation asks the peer tutor
for clarification.

The peer tutor may provide various recommendations,
such as “no comment,” a positive comment, a negative
comment, a clue with respect to an operator pattern, a clue
with respect to a special move, or a direct recommendation

CHOU ET AL.: AN APPROACH OF IMPLEMENTING GENERAL LEARNING COMPANIONS FOR PROBLEM SOLVING 1383

with respect to a specific expression or move. The learning

companion reconsiders and learns based on the tutor’s

various recommendations. The learning companion can

then change its process, request again, or continue its

previous process. The learning companion learns some-

thing if it finds that it has made a mistake or previously

neglected something. The following is a set of heuristic

rules for different recommendations.
Heuristic Rule 7: How a learning companion responds

to various recommendations.

1. If the tutor’s recommendation is a positive comment
or no comment, the learning companion continues
with its process.

2. If the tutor’s recommendation is a negative com-
ment, the system runs the learning task simulation
again, i.e., the learning companion reconsiders.

3. If the tutor’s recommendation is one with respect to
an operator pattern, the system temporarily in-
creases the level of proficiency with respect to the
pattern and runs the learning task simulation again.
Therefore, the possibility of passing those operators
with this proficiency increases. Restated, the learn-
ing companion reconsiders and pays closer attention
to those operators with the proficiency that the tutor
recommends at this time.

4. If the tutor’s recommendation is one with respect to a
special move (A special move affects evaluated value
of a state), the system temporarily increases the level
of proficiency with respect to evaluating the state and
runs the learning task simulation again. Therefore, the
possibility of correctly evaluating those states with
this proficiency increases. Restated, at this time, the
learning companion reconsiders and more closely
evaluates those states with this proficiency.

5. If the tutor’s recommendation is a direct one with
respect to a specific expression or move, the system
eliminates the filter on this operator. Therefore, the
neighboring state that the operator reaches is eval-
uated. Restated, the learning companion reconsiders
and does not neglect this operator, and its reaching
neighboring state is considered and evaluated.

When a learning companion reconsiders its move, the

learning companion compares the outcome with the

previous one to determine whether to change its process

or continue its previous process. If the second outcome is

better than the first one, the learning companion changes its

process and the system increases the levels of the learning

companion’s proficiencies relating to the error during first

attempt to solve the problem. That is, the learning

companion detects something erroneous or neglected and

pays closer attention to similar cases in the following

process. Otherwise, the learning companion continues with

its previous process.
The learning companion has two options when not

comprehending why the tutor makes such a recommenda-

tion: It asks again or neglects the tutor’s opinion. In

Heuristic Rule 7, the learning companion asks again. Some

other possible heuristics are shown as follows:

1. Random. The learning companion randomly decides
to ask again or neglect the tutor’s opinion. Varying
the ratio of possibility can alter the learning
companion’s behavior.

2. Independence. The learning companion asks again
when its independence is low. Otherwise, it neglects
the tutor’s opinion. Each learning companion has its
own independence status. Controlling the learning
companion’s independence status can manipulate its
behavior.

8 PRELIMINARY EVALUATION

A preliminary evaluation was conducted to investigate
which learning model the students preferred, which
competence level of a learning companion the students
preferred, and whether learning companions are humanlike
or not. The subjects of this evaluation were 42 students of
the computer science department at Jin-Wen Institute of
Technology. The students engaged in the three learning
models of DwestAgent with three different learning
companions and then completed a questionnaire. Table 2
shows students’ preferred learning companions in three
learning models.

The evaluation of DwestAgent was conducted in three
periods. In the first period of evaluation, the students
played Model one of DwestAgent three times to compete
against learning companion John (expert), Brown (medioc-
rity), and Mary (novice), respectively. Twenty-three stu-
dents preferred the expert as their competitor. Most of them
stated that it was challenging to compete against an expert.
Eleven students preferred the mediocre competitor. They
stated that the competence level of the competitor is about
the same with them. Six students preferred the novice
competitor because they could defeat the competitor to
attain a sense of achievement.

Investigation into the relationship between game results
and students’ preferred opponents shows that, 13 students,
who were defeated by the expert but defeated other
learning companions, preferred the expert competitor. On
the contrary, another 13 students, while attaining the same
game result, preferred other learning companions. We
attribute the investigation result to personalities of students.
Some students prefer more challenging, while some prefers
less challenging.

In the second period, the students played Model two of
DwestAgent three times under the advice of John, Brown,
and Mary, respectively. Twenty-seven students preferred
the expert tutor because the opinions of this tutor were
perfect and insightful. The students who preferred med-
iocre or novice tutors stated that their preferred tutor did
not always criticize their solutions so that they could
maintain a better sense of achievement.

1384 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

TABLE 2
Students Preferred Learning Companions

in Three Learning Models

In the third period, the students played Model three of
DwestAgent three times to tutor John, Brown, and Mary,
respectively. Sixteen students preferred the expert tutee
because the tutee’s moves were perfect and they could learn
from it. Ten students preferred the mediocre tutee because
the domain competence of this learning companion was
about the same as theirs. Nine students, who preferred the
novice tutee, felt superior because their moves were better
than the novice tutee.

Among the three learning models, most students (see
Table 3) preferred model one, or competing against learning
companions. The reason is that they have total control on their
moves. Ten students preferred having a tutor to provide
opinions. While answering in which learning model the
students could learn more, 21 students chose model one
because they must think by themselves and cannot depend on
any learning companion. Nine students chose model two
because the tutor could suggest alternative solutions, thus
provoking them to think more. Ten students chose model
three because observing how the tutee made moves lended
them opportunities to learn different solutions.

Two-thirds of the students regarded the learning
companions not humanlike (Table 4). The reasons stated
by these students can be classified as following: They are
too perfect, too stupid, working in a fixed mode, lacking
representations of human beings, and others. The short-
comings of being too perfect or too stupid can be improved
by adjusting learning companion patterns. Employing more
heuristic rules or randomness can introduce more working
modes of the learning companions. Adding voice and
animation to the learning companions can enrich represen-
tations of human beings. However, one third of students
regarded the learning companion humanlike. In addition,
one of the purposes of the learning companions is to
provide students with a social learning environment.
Whether these learning companions are humanlike or not
is just a factor of the students’ motivation.

9 CONCLUSIONS

This study proposes an approach, named GCM, to imple-
ment learning companions with different domain compe-
tency and different roles. DwestAgent, an LCS
implemented in GCM, provides an example to demonstrate
the feasibility of GCM and to discuss the implementation
requirements and related issues in simulating the domain
competency, learning competency, and behavior as a peer
tutor, and behavior as a peer tutee of a learning companion.
GCM takes data of learning companion patterns as
parameters to simulate the learning companions. With
different values of these parameters, learning companions
possess different competency and behaviors. Varying the
data of learning companion patterns can alter its compe-
tency and behavior. Moreover, a learning companion
system simultaneously simulates several learning compa-
nions by establishing several learning companion patterns.

The paper also shows the variations of three learning
models in DwestAgent. These variations are produced by
employing learning companions of different competency
levels. These variations and their similar learning compa-
nion systems, which are designed in different theories by
other researchers, are listed. Such variation shows the
strengths and goals of GCM: Varying the role of a learning
companion and adjusting the data in the learning compa-
nion pattern produces various learning companions for
different learning models and different theories.

In addition, a preliminary evaluation was conducted to
investigate which learning model the students preferred,
which competency level of a learning companion the
students preferred, and whether the learning companions
were humanlike or not. The evaluation results show that the
students’ preferred learning models and learning compa-
nions vary. Thus, a flexible and adaptive approach like
GCM to implement learning companions with different
roles and domain competencies is essential to satisfy
students’ needs.

Applications implemented in GCM are available to
students to choose their preferred learning companions
and learning models. Another application of GCM is to
design a series of games with different learning companions
and different game maps. The series should include
practicing arithmetic skills step by step. Additionally,
scaffold-fading strategies should also be applied to design
learning companions. That is, the user should compete
against a “weak” learning companion and collaborates with
a “strong” learning companion initially. Later, the compe-
titor should become stronger and stronger, while the
collaborator becomes weaker and weaker. This design
allows the student to receive gradually decreased help
from the learning companions and to face gradually
increased challenges. In addition, students can defeat the
“weak” learning companion to attain a sense of achieve-
ment and then take the challenge of next stage.

ACKNOWLEDGMENTS

The authors would like to thank the National Science
Council of the Republic of China for financially supporting
this research under Contract No. NSC89-2520-S-008-011.
The authors would also like to thank Yih-Ruey Juang and
the students of the Jin-Wen Institute of Technology for their
participation in the evaluation.

REFERENCES

[1] R.R. Burton and J.S. Brown, “An Investigation of Computer
Coaching for Informal Learning Activities,” Int’l J. Man-Machine
Studies, vol. 11, pp. 5-24, 1979.

[2] J. Self, “A Perspective on Intelligent Computer-Assisted Learn-
ing,” J. Computer Assisted Learning, vol. 1, pp. 159-166, 1985.

CHOU ET AL.: AN APPROACH OF IMPLEMENTING GENERAL LEARNING COMPANIONS FOR PROBLEM SOLVING 1385

TABLE 3
Student’s Preferred and Most Benefited Learning Models

TABLE 4
Whether Learning Companions are Humanlike

[3] A. Gilmore and J. Self, “The Application of Machine Learning to
Intelligent Tutoring Systems,” Artificial Intelligence and Human
Learning, Intelligent Computer-Aided Instruction, J. Self, ed., pp. 179-
196, New York: Chapman and Hall, 1988.

[4] T.W. Chan and A.B. Baskin, “Studying with the Prince: The
Computer as a Learning Companion,” Proc. Int’l Conf. Intelligent
Tutoring Systems (ITS ’88), pp. 194-200, 1988.

[5] P. Dillenbourg and J. Self, “People Power: A Human-Computer
Collaborative Learning System,” Proc. Second Int’l Conf. Intelligent
Tutoring Systems, C. Frasson, G. Gauthier, and G. McCalla, eds.,
pp. 651-660, 1992.

[6] T.W. Chan, Y.L. Chung, R.G. Ho, W.J. Hou, and G.L. Lin,
“Distributed Learning Companion Systems—West Revisited,”
Proc. Second Int’l Conf. Intelligent Tutoring Systems, C. Frasson,
G. Gauthier, and G. McCalla, eds., pp. 643-650, 1992.

[7] T.W. Chan and A.B. Baskin, “Learning Companion Systems,”
Intelligent Tutoring Systems: At the Crossroads of Artificial Intelligence
and Education, chapter 1, C. Frasson and G. Gauthier, eds., pp. 6-
33, New Jersey: Ablex Publishing Corp., 1990.

[8] B. Goodman, A. Soller, F. Linton, and R. Gaimari, “Encouraging
Student Reflection and Articulation Using a Learning Compa-
nion,” Int’l J. Artificial Intelligence in Education, vol. 9, pp. 237-255,
1998.

[9] P. Hietala and T. Niemirepo, “The Competency of Learning
Companion Agents,” Int’l J. Artificial Intelligence in Education,
vol. 9, pp. 178-192, 1998.

[10] T.W. Chan and C.Y. Chou, “Exploring the Design of Computer
Supports for Reciprocal Tutoring,” Int’l J. Artificial Intelligence in
Education, vol. 8, pp. 1-29, 1997.

[11] L.A. Scott and F. Reif, “Teaching Scientific Thinking Skills:
Students and Computers Coaching Each Other,” Proc. Ninth Int’l
Conf. Artificial Intelligence in Education (AI-ED 99), pp. 285-293,
1999.

[12] E. Aimeur, H. Dufort, D. Leibu, and C. Frasson, “Some
Justifications for the Learning by Disturbing Strategy,” Proc.
World Conf. Artificial Intelligence in Education (AI-ED ’97), pp. 119-
126, 1997.

[13] S. Palthepu, J. Greer, and G. McCalla, “Learning by Teaching,”
Proc. Int’l Conf. Learning Sciences, pp. 357-363, 1991.

[14] D. Nichols, “Issues in Designing Learning by Teaching Systems,”
AAI/AI-ED Technical Report No. 107, Computing Department,
Lancaster Univ., Lancaster, United Kingdom, 1994.

[15] K. VanLehn, S. Ohlsson, and R. Nason, “Applications of
Simulated Students: An Exploration,” J. Artificial Intelligence in
Education, vol. 5, no. 2, pp. 135-175, 1994.

[16] R. Uresti and J.A. Lecoba, “A Learning Companion System for
Binary Boolean Algebra,” Proc. Workshop 1: Animated and
Personified Pedagogical Agents, AI-ED’99 Conf., L. Johnson, ed.,
pp. 56-61, 1999. Also available in Int’l J. Artificial Intelligence in
Education, vol. 10, pp. 1060-1069, 1999.

[17] A. Collins, J.S. Brown, and S.E. Newman, “Cognitive Apprentice-
ship: Teaching the Craft of Reading, Writing, and Instruction,”
Essays in Honor of Robert Glaser, Hillsdale, N.J.: Lawrence Erlabum
Associates Publishers, 1989.

[18] T.W. Chan and J.A. Lai, “Contest-Kids: A Competitive Distributed
Social Learning Environment,” Proc. World Conf. Computers in
Education, pp. 767-776, 1995.

[19] C.Y. Chou and T.W. Chan, “Redefining Learning Companions:
Past, Present, and Future of Educational Agents,” submitted for
publication.

[20] A. Newell and H.A. Simon, “GPS, A Program That Simulates
Human Thought,” Computers and Thought, E.A. Feigenbaum and
J. Feldman, eds., pp. 279-293, New York: McGraw-Hill, 1963.

[21] B. Carr and I.P. Goldstein, “Overlays. A Theory of Modeling for
Computer-Aided Instruction,” AI Lab Meno 406, MIT, Cam-
bridge, Mass., 1977.

[22] J.S. Brown and R.R. Burton, “Diagnostic Models for Procedural
Bugs in Basic Mathematical Skills,” Cognitive Science, vol. 2,
pp. 155-191, 1978.

[23] C.Y. Chou, C.J. Lin, and T.W. Chan, ”User Modeling in Simulating
Learning Companions,” Ninth Int’l Conf. Artificial Intelligence in
Education (AI-ED ’99), pp. 277-284, 1999.

[24] A. del Soldato and B. du Boulay, “Implementation of Motivational
Tactics in Tutoring Systems,” J. Artificial Intelligence in Education,
vol. 6, no. 4, pp. 337-378, 1995.

Chih-Yueh Chou received the PhD degree in
computer science and information engineering
from the National Central University, Taiwan, in
2000. He is a postdoctor in the Learning
Technology Research Center of National Cen-
tral University. His current research interests are
intelligent distance learning, social learning
theory and systems, and intelligent educational
agents.

Tak-Wai Chan received the PhD degree in
computer science from the University of
Illinois at Urbana-Champaign, in 1989. He is
a professor in the Department of Computer
Science and Information Engineering at Na-
tional Central University, Taiwan. His current
research interests are intelligent distance
learning, social learning theory and systems,
and intelligent educational agents. He is an
associate editor of the International Journal of
Educational Telecommunication.

Chi-Jen Lin received the MS degree in compu-
ter science and information engineering from the
National Central University, Taiwan in 1995. He
is a PhD student in the Department of Computer
Science and Information Engineering at National
Central University. His current research interests
include distant learning, artificial intelligence in
education, and intelligent agents.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

1386 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

