
Usinq a Neural Network to
Predict Student Responses

~SusanMengel,]WilliamLively
t[lnivcrsitjv of Arkansas
fl’exas AtiNl University

Abstract

One ,,f the ilnportant components in an intelligent tut(,ring sys-
tenl is the student model. This model is used to predict what
t}lr s! udent may do next as well as to serve as a repository of
past student solutions. The student model is important in that it
<an help to direct the student to unknown material when rmough
~,,ncepts have been mastered and to materiaf that needs to be
IX:,Viewwf whep the student is ~sure. Some stud.en~ models. have
tried t.u predict student solution steps by restricting the inte-
rface to the point where the student cannot make an unknown
move. others do not concentrate on prediction, but instead con-
centrate on remedying errors in problem solutions. Since the
problem of prediction is difficult, another tool, the neural net-
work, shodd pruve useful. Neural networks have the ability to
generalize over a set of student answers. This ability gives the
network the capacity to answer as the student would on prob-
lems that the network has never seen before. Given this exciting
p{,ssibility, research has been started using the bacfrpropagation
model of neural networks to learn a student’s method in per-

f{,rming subtraction. The preliminary results reported in this
r,aper are encouraging and serve to show the promise of neural
nrt works in the student model of intelligent tutoring systems.

Introclllction

I]ltelligrl\t tutorin~ systems (ITS) trad]tionafly consist of four
cnmpollcmts: (he expert module, the student model, the tutoring
module, and t be interface module. The expert module contains
the ctonlain knowledge of a human expert and is used to solve
prwblerns and make inferences. Thc student model is utilized by
diagnosis prncedums to make an approximation of the student’s
S(at e <,f knowledge, Since a student may not work problems as
effhierlt ly M am expert, the tutoring module embodies the strate-
gies ueccssary to reduce the difference between the student’s and
the expert’s perfornmnce. ‘The interface module functions as the
me[liat or betwrwn the student and the ITS in the hope that the
st udrnt will learn the material and the ITS will interpret the stu-
(Ient’s act ions appropriately. Specifically, the interface presents
the ITS’S messages to the student and sends the student’s input
t,) the system.

on,: of tllc components of an ITS is the forms of this paper,
namely. the student model. Several techniques have been used
by other researchers to implement student models in order to
predict sturfcnt responses or to diagnoxe studeut errors. These
st rat egies include the use of planning techniques for prediction
and ,,f Img catalogs enumerating st urfent mist akes to find student
errors, Alt.hollgh they have not been used in previous ITS for
I)rcdiction, neural networks an= beginning to be recognized as
a possible tool for predicting stlldent answers. These networks
are able to memorize a pattern set. to generalize over a pattern
set, to classify like patterns together, and t{, associate different

pat tems t ogethcr. These at tract ive qualities should prove to be
an russet to ITS in the student model.

Permission to copy without fee all or part of this material is
granted protidad that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and tha
title of the publication and its date appear, and notice is given
that cop~ng is by permission of the Association for Computing
Machinery. To copy otherwisa, or to republish, requirea a fee
and/or specific permiaaion.
e 1992 ACM O-89791 -502 -X1921000210669 ... S505O

Student Model

Several approaches to constructing the student model have been
implemented which do not use neural networks. These aF-
proachcs include the overlay model, bug libraries, plan recog-
nition, issue tracing, expert systems, model- trzwing, condition
induction, and path finding. The details of these implementa-
tions may be found in VanLehn[l I] and typically use traditional
symbolic processing mechanisms, such as heuristic search or rule-
based representations.

f3ezde and Finlay[l] and Zerwekh[14] have used neural networks
in user and student models, respectively. Beafe and Finlay em-
ployed a network to classify experts and novices in an exploratory
functional programming environment and a network to deter-
mine user tasks in an on-fine bibliography system. Zerwekh’s
network classifies foreign language students based upon their per-
formance in a series of lessons.

Researchers have higher expectations for the student model than
what actually is implemented. According to Wenger[13], the stu-
dent model should reflect those aspects of student behavior and
knowIedge that affect the student’s learning ability. The model
should be executable and should be able to change as more di-

agnostic data is made available to the system. Sleeman and
Brown[9] add three issues that the student model must incor-
porate. The model must determine how to aasign blarue in the
presence of a student failure to a problem in which more than
one skill is necessary for solution development. The model must

limit the number of hypotheses arr to the student’s errorreous
behavior SI, a cc,rnbinatorial explosion of possibilities does not

occur. Finally, i he model sbolrfd be able to work in the presence
of noisy data when the student makes error-s because of fatigue ur
overload. Clancey[3] equates the student model to a simulation
model consisting of the student’s knowledge and the student’s
inference procedure used to operate upon that knowledge. This
type of model can be used to predict what the student will do
next and to find the basis in the student’s paxt history of his
problem solving procedure.

An alternative viewpoint for a less complex student model than
the expectations described in the preceding paragraph is held by
Se~8]. The student model may serve as a repository for student
beliefs about the learning material, These beliefs should be able
to be obtained only through the interface instead of through us-
ing a complex inferencing procedure to generate them. Further,
the student model should bc visible to the student so that the
student can refine and replace beliefs as necessary (this process
is aided by a collaborative tutoring module that serves to guide
the student strategicatfy through the learning material without
making right or wrong vallw judgernents upon t}w st udent’s be-
liefs).

Neural Nets

Neural networks are mathematical silnulat ions of the human
brain. The human brain has a massively parallel architecture
of some 1011 neurons where each neuron may be comerted to as
many as 1,000 to 10,000 other neurons. Cornnmniration occurs
among the neuronaf cormectiom via chemicafs (neurotransmit-
ters) that can be inhibitory or excitatory. If enough excitatory
input is received to override the inhibitory input and exceed a
ueuron’s threshold, then the neuron fire.s; i.e., sends an electrical
signaf dnwn its axon which causes it to release neurotransmitters
to other neurons.

The computational neuron[7] (shown in Figure 1) receives n in-
puts (frt,m the environment or from other connecting neurons)
and produces one output (to the environment or to other neu-

669

Q

Wo

w

(~;=,13w] – ewo
)

0

wl

Fig. 1. Artificial neural processing tit.

Output Layer

Hidden Layer

Input Layer

Fig. 2. Neural network.

rons). A neuron may have an additional input, @, that acts as
a threshold or as an outside environmental input. If the input is
from the environment, then such input should be received with-
out modification by the neuron. If the input is from a connecting
neuron, then the input may need to be attenuated or strength-
ened. For this purpose, the input may be multiplied by a weight.

To produce its output, the neuron may use a threshold (activa-
tion or signal) function to map the input to a specified range.
Usually this range is very small ([0, 1]) in order to keep neurons
from having extremely large values. Using a threshold function is
often necessary to cause an entire network of neurons to converge
or settle down during training and recall.

Neurons generaUy are connected together into formations that
are found in the brain[l 2]. For instance, some neural networks
may be connected in a hierarchal fashion; i.e., a layer or field
of neurons (a set of neurons that reside in the same group) may
be comected to an upper layer of neurons, and that upper layer
may be connected to yet another higher layer. An example of a
three layer network is shown in Figure 2. Each field or layer has
some number of neurons and the comections may be made in tra -
.fieht where neurons in the same field are connected to each other,
inter-ji eld where neurons in one field are connected to neurons in
different fields, or both. Usually, there exists an input field, an
output field, and fields in between those. The in between fields
are known as hidden layers.

The weights on the connections hold the information that the
entire network has learned in order to perform correctly; i.e.? the
weights correspond to long term memory in humans. The we]ghts
also are characterized as long term memory because changes to
them occur in very small increments; therefore, they do not jo rget
quickly. The neuron, itself, corresponds to short term memory
because it replaces its value every time new input is presented.

The weights can be modified as the network is trained so that the
network produces the desired output. For example, the weight
change of a weight can be given by an equation, such as the one
for backpropagatiorr[6]:

AW = Ad. i- /AwP.ev,ous

where A is the learning rate, 6 is the output error of the Ileuron
connected to the weight, o is the output of that neuron, and p
is the momentum term. The learning rate determines the size

a) Change O-n to 9-n. b) Subtract smaller from larger digit

540 456
434 –374
-i-i-F 122

c) Add 10 to borrower. d) Increment from point of borrow.

678
7013 _:!?l;

-60 5

10 8 167 8

Fig. 3. Subtraction errors.

of the weight changes and the momentum term is designed to
keep the network horn becoming trapped in a local minimum.
As the weight changes are made, the network travels through
hills and valleys until it becomes trapped in a valley which is
characterized by the fact that further weight changes have little
effect upon the current value of the weights. If the valley is not
the global minimum, but instead is a local minimum, then the
network may not have learned properly; i.e., the network may
not give the correct output for an input on which it has been
trained.

The signals or information flow in a neural network maybe feed-
forward (infomtion flows in one direction from the input layer
to the output layer), feedback (information flows in either di-
rection; i ,e., it can bounce back and forth from input to output
layer), or lateral (information flows among neighboring neurons
in the same field). A network with feedback is known as a re-
current net work. Laterally comected neurons usually occur in
the output field of competitive networks. A competitive network
ordy allows one output neuron to tire thereby classifying its in-
put. The output neuron also may send signals over the lateral
connections preventing the other output neurons from firhg.

Neural networks map data to data and can store two types of
patterns or vectors: spatial, such as a single static image, and
spatiotemporal, such as a sequence of spatial patterns. Patterns
are generaliy sequences of one’s and zero’s and are given mean-
ing by the designer of the neural network. If a neural network
only stores single patterns (Al, An), then it is autoassocia-
tive. If it stores pattern pairs ((AI, B]),. . . . (An,13n)), then it
is heteroassociative.

Student Model Experiments

To demonstrate the usefu+ss of neural networks.in the student
model, a set of three experiments was performed m order to an-
alyze the predictive power of the networks even with incomplete
or conflicting data. This section shows the progression of the ex-
periments to elucidate the factors involved when using a neural
network in the student model. First, the domain, data, and net-
work learning paradigm of the experiments are considered. Then
three experiments and their results are discussed.

Domain

The domain that was Shosen is subtraction. The re+son for this
choice M that subtraction problems may be mapped mto a prob-
lem pattern and then into an answer pattern for a neural network
to learn. A more important reason for this choice is that Brown
and Burton[2] have analyzed subtrwtion so well. In fact, they
found 110 bugs students can commit when solving a subtraction
problem and enumerated the bugs in the manual by Friend and
Burton[4].

The subtraction errors students committed varied greatly and
could be quite complex. Some students ignored the subtraction
sign and performed addition. Many errors involved borrowin

3where O - n would be changed to 9 – n. Also, m – n woul
be changed to n - m if n were greater than m. Some students
would not borrow across a zero, they simply would add ten to the
column that reqnimd a borrow. When borrowing across severaI
zeroes, some students would add one to the last borrow in suc-
cession so that 7003 would become 678(13) after borrowing one
from the seven. Examples of these errors are shown in Figure 3.

Network ‘1’raining Data

For the experiments, tight control needed to be maintained over
the data so that the predictive power of the aetworks could be
measured accurately. To maintain this coutrol, synthetic student
data generated from the results found by Brown and Burton
was used. Thus, all possible answers to subtraction problems
presented to a network could be obtained. Reaf student data
would not be as complete and so a network’s results on missing
data (i.e., data on which it had not been trained) could not be
checked if the student had not worked the problem. Furt hm-more,
repeating Brown and Burton’s study by analyzing the work of
1300 students would have detracted from the goal (,f showing the
predictive power of nenraf networks, Fortunately, their study is
exhaustive and a good representation of what students might do
when performing subtraction.

N’6fw0rk f,earning Paradigm

Backpropagation wss the paradigm used since a backpropagation
net work is known to be able to generfllze over a pat tern space
and to learn far more patterns than the number of neurons in
the netwmk[6]. It is a feedforward paradigm and is sufficient for
showing the predictive power of neural networks.

E.rp?rcments

‘~he experiments were designed to see if ururaf networks r-an
replicate the behavior of a student working subtraction prob-
lems correctly or incorrectly when the data from the student is
complete, inromp]ete, or noisy. The overall approach consisted
of the following major steps:

●

●

●

●

●

●

design a network to perform subtraction

t rain the network on complete data

t rain the net wnrk on incomplete data

train the network on erroneous data

train the network on noisy data.

e~,aluate the network’s ability to model the student’s cog-
nitive promwses Ilnder each scenario.

Specifically, the first part of the experiments involved desigm
ing and training a backpropagation network in order to see if
the network could perform subtraction. Having deter-mined that
the network could perform subtraction, random patterns were
deleted from the pattern set in increments of ten to see how the
network performed in the absence of some information. Follow-
ing this test, tbe [let work was trained on data which had some of
the errors introduced from the manuaf by Friend and Burton[4].
Once again, after the complete pattern set with errors was used,
random patterns were deleted in increments of ten to deter-mine
how well the network generalized with incomplete data. Flu-ther.
{inflicting data representing a student’s careless or random er-
rors was introduced into the pattern set to see if the network
trained properly and reflected the gist of the problem solvilig
process of the S(udent.

‘f’hc neural networks were simulated by a C program written by
thr author un a Sun-3’ workstation running tlfVIX2. All of the
following experiments were performed with this program. The
program implemrnts the equations of Rumefbart, Hinton, and
\Yilliams[6] with the following exception: the derivative of the
sigmoid function is not used on the output layer error. Severaf
experiments on networks without the derivative caused learning
to occur much faster. The training of the network WM stopped
when the error of the output layer neurons reached a predeter-
mined cutotl point. This error is calculated in the following man-
ner. For each p-ttern, the error is ~ ~,(t, – o,)2 where t, is the

target output, for neuron Land o, is the actual output. The error
for all pat terns is summed yielding the overall error (square er-
ror) used to determine the goodness of network learning. Since
the networks may not, learn au of the patterns, to stop training
when the netwrrrk will not learn the patterns any better is best.
During training tile weights and biases were updated after each
pattern was presented.

1Registered trademark of Sun Microsystems, Incorporated.
2 Registered trademark <~fAT&T

@6w60i3q
A

~oooooo

t
bo ““’ $) q? ‘“” $iQ
L1——_l

top bottom top bat tr)m

digit digit digit digit

b - borrow c - equal
h - nigh I - low

Fig. 4, First single- c<,hunn subt rartion net work.

Experiment One: After discovering that subtraction ,.{,uld Im
expressed in terms of a pattern recognition task and that lhe area
of subtraction had been researched well, the design of the net-
w?rk ~emained. This n~twork needed to learn subtraction even
with Incomplete data slnre the number of problems a student
may be expectccf towork is not infinite. Therefore. the domain
was constrained to problems involving a larger three-digit aunl-
ber minus a smalfer three-digit number. (Infort ,:llatcly, thetotal
number of patterns that the network rould learn turned out to
be 500,500 (IWO patterns: 999- n, !JW patterns: !398 – ,, I
pat tern: O– O) even with the aforcrncnt iuned rest rictit~n ~,f three-
digit problems. Obviously, a stl]dent rannot be expect,.d to wnrk
this many problerm. ‘lhr ne~ work, however. w<,uld need almost
that many patterns to t rain l>roperly. To get aroun[l this diffi-
culty, the number of neur{)naf connections was (constrained an{l
the pattern set was Iimitml to 20 pai term to see if the network
rrruld train well on au incolnplcte rlul]d,er of pat tclr]<,

Several networks were triml to porf,,rrn three-digit subtra<.ti[~l}.
None of them would even converge. lns(rad they div,,rged with
the weights taking on ever increasing valiles.

The result of this experiment sh~~wed the difficulty [,f <,verr-{~mirrg
the scaling p~ohlem in neural networks If the training pattern
set is not large enmlgh, then a network may not he able t[~ learn
the pat terns. For any I’rS, a not work, however, mltst be de-
signed so that the total pat tern set does not exceed tbr- ullmf)rr
of problems a student is likely to work. Somrtimes adrfit icmal
information ran br added to rarh of the patterns to help thr,
network train wit b a smaller pat tcm set as with TmaIIro and
Sejnowski’s[lO] backgam]non network (the number (,f possif,lr
nu>ves in backgammon is pr(~hihitiv~ly large, but tflf,y were able
to train the network on :\202 b[,ard p(wit ions with ,!29 input units
denoting seven f~ther dlarartcristitis b(.>ides the board [x)nfigll.
ration). Even with t heir success, finding another n(. t w[,l-k wit h a
much smaller pat t ern SOL semrwd a])propr iate.

Ezperimenf TUJO; Instewl {,f using a three-digit problem, the
use of a network that only operated upon a single r[~lunm (two
digits) at a time seemed better Ibt- network WJ designed is
shown in Figure ,!. Part of the inpi]t layer consists of the two
digits where a one wotlld be plarerf in nelwon n and zeroes in the
rest fur a particular digit. For irwt ante, 0001000000 00000130fK)l
would represent .3 — 9 sinre a cmc is in the three’s position for
the top digit and a one is in the nine’s position for the fmttom
digit. The next input netlroa denotes whether the subtraction is
per-formed in the presra{e ,,f a borm,w (1 - yes and O - no). The
next six neurons denote whet her t }],. top digit is greater t han (b),
less than (1), or equal to (e) the tx, ttom digit. For exan}p[r, thesv
neurons would take on thr values 001 lCUIfor 3 – 9 hcca(lse three
is less than mtre. ‘f’he six neurons are present to help the pr[~ress
of generalization. All of the iupllt layer neurons arc connected
to the middle layer, but the I]orr(,Wand comparison neurons alsu
are connected to the top Iaycr. ‘Ibis a{t ion was taken t{) let the
additional neurons affect f he gcaer, dizatian proress in order to
enhance the proress an(l to give them Inore {)f an effect in the
result of the subtraction. The olltput Iaym only has one neuron
take on a value (,f {Jne 1{,1denotr tliprmlilt of the subtra<.tit~rl.
In the ca-e of 3 – 9 not Ir, the prmcnrc of a I,orrow, t hc result
of the network would br 1)000 10(]01)0 fl~r fol!r (in t tic presen {-e

TABLE I: E2 - TRAINING PATTERN SETS

Correct Subtraction
Subtracts Smaller From Lqrger Di it

BWrites Om C+unnsR.equmnga orrow
Thinks n-n]sn
Thinks n- Ois O
Thinks O- n is O
Thinks O-nisrr
Thinks 1 -7L k 1
Changes O-nt? 9-n
Borrows, but Writes O Where the Borrow is Needed

of a borrow, it would be 0001000000 for three). A hexadecimal
representation was not used since the digits A through F are not

present in the decimaf number system. Interpreting a B as the
answer for 3 – 9 woufd be difficuft. fnstead, only the neuron with
the largest value in the output layer becomes a one.

The operation of this network maybe thought to be similar to the
way a human might perform subtraction. First, the two d]gits in
the least significant column would be subtracted, then the next
two, and so forth. For the problem 634-299, the network woufd
get 4-9 first, 3-9 in the presence of a borrow second, and, finally,
6-2 in the presence of a borrow. This network, however, does
not propagate a borrow, itself, so an outside source would have
to generate a borrow for the network if a borrow were needed.
Since subtraction columms are used, the totaf pattern set consists
of 200 patterns (ten 9 — n not in the presence of a borrow, ten
9 – n in the presence of a borrow, ten 8- n not in the presence
of a borrow, ten 8- n in the presence of a borrow, ten O —n
not in the presence of a borrow, ten O - n in the presence of a
borrow).

To test the network on incomplete data, random patterns were
eliminated from the pattern set in increments of ten for up to
60 patterns. The limit of 60 was set in order to be able to
perform more runs and because the remaining 140 patterns could
be obtained from a small subtraction test consisting of about 28
five-digit problems.

The backpropagation simufator for this experiment was run on a
Sun SPARCstation3 which has considerable power. A limit was
set of 20,000 iterations ~hrough the entire pattern set (i. e., one
iteration is one time through the full pattern set) and of some
preset square error value to stop the network when convergence
had taken place. Instead of coming as close as possible to the
smallest square error that could be obtained, a coarzer vafue was
used. Limitations on a training run were set in order to be able
to have more training runs since 20,000 it erat ions through the
pattern set could take around 20 CPU hours or about two days.
The designer of an ITS may wish to be more careful when train-
ing the network, but certainly would not want a network to take
too long to train. As much as possible, all learning parameters
were kept the same, once again, to alfow for more runs.

The data sets used for the network in this experiment are shown
in Table 1. First the correct subtraction training set was used
and then nine sets with subtraction errors were used.

Table 11 shows the result of training the network to do correct
subtraction. Each line in the table represents one pattern set
on which the network was trained. Line one is for the complete
pattern set of 200 patterns, line two is for the pattern set of 190
patterns constructed by the random deleting of 10 patterns from
the complete set of 200, and so forth. The square error column
shows the difference of the network output from the desired out-
put after the network completed training. The percentage of the
deleted patterns recognized and the traiuing set patterns recog-
nized is shown in the next two columns. The percentage of pat-
terns in the complete pattern set of 200 the network recognized
is shown in the next column. The last column shows how many
times the network had to go through the training pattern set in
order to learn the patterns. For example, the network was able
to learn subtraction in 11,628 iterations through the complete
pattern set and had a square error of 1.99. On the other hand,
after eliminating just ten patterns, it learned the other 190 in
603 iterations and recognized 40~0 out of the ten eliminated even
though those ten patterns had not been present in the training
pattern set. After eliminating twenty patterns, the network did
not even converge to the square error limit of 2.o.

3Registered trademark of Sun Microsystems, Incorporated.

Even with thk odd behavior (probably the network encountered
a Iocaf minimum), the results are encouraging as in the case
with 30 patterns missing where 7770 of the missing and 9990 of
the present patterns were learned for a totaf of 96~o correctness.
In contrast, a rule base designed to process the training pattern
set of 140 patterns would not be able to handle the other 60
since rule hazes can deal with only what is built into them. The
network, however, could recognize 37!l of the deleted patterns.

The first error on which the network wrM t,rained was the error
where a student does not borrow at alf, but instead subtracts the
smaller from the larger digit. The net work learned this error wefl
as shown in Table 111. fn every case the network learned quickly
and only missed up to 1 lVO of the full set of patterns. This
error is easy to learn since it is systematic; i.e., perform normal
subtraction when a borrow is not needed and do the same thing,
although wrong, when a borrow is needed.

The next error was the mistaken notion that O– n is O. Thk error
is harder to learn because it goes against the overaff notion of the
pattern set which essentially is correct. Indeed, Table IV dkplays
the difficulty the network had with this error as in some cases
the network did not converge completely and missed more of the
patterns than in the runs with the previous error. The worst
performance occurred when 60 of the patterns were deleted and
onfy 7770 of the fulf pattern set was recognized correctly with
onfy 23~o of the missing patterns correctly recognized.

The fourth through the eighth errors are of the same type as the
previous error, rather peculiar and going against the overalf pat-
tern set. The ninth error, however, is systematic. The network’s
resufts on these errors may be found in Mengel[5].

The average number of patterns recognized by the network is

shown in Table V. The results are encouraging since the network
could learn the patterns present in the training set. The network
also could recognize properly over .50% of the patterns. It did
need some help in recognizing the missing patterns.

At this point, work on the network terminated since the network
was having trouble recognizing pecuhar errors. Additionally, a
borrow was put into a pattern if correct subtraction required
it even if the incorrect subtraction did not. Clearly, another
net work was needed.

The results of this experiment showed that the network has the
ability to generalize over complete and incomplete pattern sets.
A cause for concern to some ITS designers may be that the net-
work dld not recognize all patterns and performed poorly in other
instances. That the student model be as accurate as possible is
very important, but even humans cannot achieve perfect perfor-
mance in all cases. Furthermore, other AI paradigms, such as
rule bases, cannot handle unknown data at all,

One of the more important issues is how many parameters can
be adjusted to tiect the network’s learning performance. One
can reorder the pat tern set, change the learning and momentum
terms, change the square error cutoff. alter the initiaf setting of
the weights before training, tiect the updating of the weights
(after each presentation of the pattern set or after each pattern),
try numerous small changes to the backpropagat ion algorithm to
speed it up, and redesign the network. Having to modify all of
these parameters is beneficial rather than detrimental. Having
the ability to modify the student model for students who may
deviate from the norm is better. The alternative is having a
static model where no changes can be made and certain students
cannot be modeled.

The odd behavior of the network when training is a concern since
in some situations it did not train in 20.,000 iterations when m
number of patterns were missing, but dsd just fine when n pat-
terns were missing. This problem is due to the network encoun-
tering Iocaf minima. Changing tbe weight initiafizations and
varying the learning rate may help to solve this difficulty.

Another concern is the tirqe it took to ~rain the network. Real-
istically, the network used m tlus experiment would not triwn on
a personaf computer as quickly as it does on the Sun SPARC-
stations. Once trained, however, the net work is ahnost instant a-
neous in getting the result on a given input. Also, more powerful
personaf conlputers are becoming available.

The positive aspects of neural networks for ITS brought out by
this experiment include tbe ability to generalize, to train from
student data, and to recall patterrui instantly. In totaf, over
70 training runs were made with the runs shown and runs to

TABLE II: E2- CORRECT SUBTRACTION

Run
“:: “F;::::T; “E:&?;;- Rec!i&lzed l“;’’::: -

All Patterns 1.99 100% 100%
10 Missing 1.99 40%
20 Missing

1OO?Z 97% ‘603
3,01 6090 9970 96% 20,000

30 Missing 1.99 77% 99% 96% 1,571
40 Missing 2.54 40?70
50 Missing

100% 88~0 20,000
1.99 34~o 10070 84% 4,165

60 Missing 1.99 37% 100% 81% ,5,365

TABI,E 111: E2 - SUBTRACTS SMALLER FROM LARGER DIGIT

Run

All Patterm
10 Missing
20 Missing
30 Missing
40 Missing
50 Missing
60 Missing

T7GE
i?rror

1.99
1.99
1.99
1.99
1.98
1.99
1.99

rfl u n 1 SquaremError

Alf Patterns 2.30
10 Missing 1.96
20 Missing 6.50
30 Missing 1.99
40 Missing 1.96
50 Missing 1 ,g?

60 Missin 1.96

Mwsmg P atterns Present Patterns Tots!
Recognized Recofized Recorcmzed

IVA 100% 100%
10070 100?Z 100?4
100% I 100% I 100%

63% 99% 94%
70% 99?4 93%
70% 99% 92%
63?70 10070 89~o

TABLE IV: E2 - THINKS O – n IS O

TABLE V: E2 - AVERACE NUMBER OF PATTERNS RECOGNIZED

lteratmns

386
438
386
,568

1,331
1,229

498

Tteratlons

20.000
4,660

20,000
14,405
2,925
3,160
1,772

Run Mlssmg Patterns Present Patterns Tot al
Recogruzed Reco~nized Recognized

All Patterns NA 99%
10 Missing

99%
63% 99% 97%

20 hiissing 61 ‘% 91?70 88%
30 Missing 56yo 99V0 92~0
40 hflssing 43% 99%
50 Missing

8876
42% 99% 85y0

60 Missing 38~o 9’S% ?31%

determine the optima! number of hi[lden units. An ITS designer
must be rareful and be willing to take the time necessary to build
a good student model.

fhperirncnt Th ret; The final network is much like the previ-
ous network with the addition of another hidden layer to help
generalization and of an additional neuron in the output layer
indicating whether a borrow needs to be propagated to the next
(.olumn on the left. It is shown in Figure 5.

The borrow in the pattemx is included only if the student actu-
ally makes one. Determining when the student borrows might
},e hard to do, but a carefully designed interface or test could
help to discover when he is. Since the borrow is included in the
output layer, it could be fed into the input layer’s borrow in the
style of a recurrent network. Further, the output borrow neuron
would indicate when the student is and is not borrowing to help
to remedy errors.

Once again, the hackpropagation simulator was run on a Sun
SPARCstation with a limit of 20,000 iterations over the pattern
set and of some square error cutoff. This network also took
around two days to train for the 20, 000 iterat ions or about 20 CPU
hours. As with the previous experiment, the learning parameters
were kept the same.

‘rhe data sets used for thenetwork in this experiment are shown
in Table VI. First the correct subtraction training set was used
and then sixteen sets with subtraction errors were used. Finally,
six sets with noise were used.

‘Table VII shows how the network trained and performed with
correct subtraction. This network did better than the previous
network both in terms of training and accuracy and seemed to
perform the worst when 60 patterns were eliminated M it remg-

~~ ~~
tOp bottom top bottom
digit digit digit digit

b berm ,W f=- equal
h - high I - low

Fig. 5. Second single-column stlbtraction network

673

TABLE VI: E3 - TRAINING PATTERN SETS

correct Sub traction
Subtracts Smaller From Larger Digit
Thinks 0- ISis O (No Borrow)
Thinks n – n is 9 ‘Borrow)

!3Writes O in Every orrow Column (Borrow)
Writes O in Every Borrow Column; Thinks 0- n is n (No Borrow)
Thinks I – n is Oif Borrowed From No tither Borrow
Thinks 1-1 is O if Borrowed From & o Further Borrow 1
Thinks n – n is 1 if Borrowed From (No Further Borrow)
Changes Top Number to 10 in Borrow Column Borrow)

\Changes a 1 to a 10 in Borrow Column (Borrow
Subtracts 1 and Adds 10 in Borrow Column (Borrow)
Adds 10 in Borrow Column (No Borrow)
Borrows Across 1; meats 1 as O (Borrow)
Does not Decrement Unless Bottom %naUer Than Top Borrow)

LDoes not Decrement when Borrowing Across 0-0 No orrow)
iDecrements to Left of O – O, but Does not Change op O (Borrow)

Correct Subtraction with No Missing Patterns Noise Introduced)
Correct Subtraction with 10 Missing Patterns L oise Introduced
Correct Subtraction with 20 Missing Patterns Noise Introduced
Correct Subtraction with 30 Missing Patterns Noise Introduced
Correct Subtraction with 40 Missing Patterns Noise Introduced
Correct Subtraction with so Missing Patterns Noise Introduced
Correct Subtraction with 60 Missing Patterns Noise Introduced

TABLE VII: E3 - CORRECT SUBTRACTION

Run
??

Uam Mmwng P at terns Present Patterns T al Iterations
rror Recognized

All P
Recognized RecoOLed

at terns 1.99 NA 100% 100% 14,623
10 Missing 1.93 80% 100% 99% 1,098
20 Missing 1.98 85% 100% 99% 4,994
30 Missing 2.78 70% 100% 96% 8.898
40 Missin~ 1.99 75~0 100% 95% 3; 646
50 Missing 1.99 54% 100% 89% 5,207
60 Missing 1.96 38~o 10W% 82% 5,880

nized less than 5070 of the missing patterns.

Tables VIII and IX show how the network performed on two
errors upon which the previous network was trained. The first
error involves subtracting the smaller from the larger digit and
the network learned it much better than the previous one. The
second error also was learned better even though it is peculiar.
The student simply writea a zero for O – n and does not borrow
from the column on the left.

The results of the network on the other subtraction error data
sets may be found in Mengel[5]. The network performed well on
recognizing these errors.

On average, the network performed satisfactorily as seen in Table
X. In fact, this network did better than the previous network.
Of course, it still lost accuracy when more and more patterns
were eliminated, but it still recognized over 50~o of the missing
patterns. The results in this table are optimistic in nature since
they show that the network did weU. 11.mther research looks
promising.

Tables XI through XIV show how the network performed when
noisy data was added to the correct subtraction pattern set (the
rest of the tables may be found in Mengel[5]). These patterns
differed from the original patterns in that the correct answer
was changed to an incorrect answer or the propagated borrow
was changed to the opposite of what it should be.

For each run, noisy patterns were added in increments of ten
located randomly in the training pattern set. Up to 60 noisy
patterns were included even though the event is unlikely that a
student would have this many random answers in a given sub-
traction problem set. Necessarily, the resiliency of network must
be determined to both small and large amounts of noise. Fur-
ther, the results of noise when ten, twenty, thirty, forty, fifty,
and sixty correct. pat terns are deleted from the full subtraction
pattern set must be seen.

After training was completed, the full correct subtraction set was
checked to see how the network would recognize the full set. The
results are summarized in the tables. The network performed
well when most of the correct subtraction patterns were present
in the training pattern set. As more correct patterns were deleted
and more noise was added, the network performance tended to

degrade.

That the network recognized over 50% of the total correct sub-
traction pattern set on average is encouraging. Certainly, the
addition of noise does have an effect on network performance,
but, in reality, less noise may be present in real student data.

The results of this third experiment are far more encouraging
than the previous experiment. The network is able to perform
better on average than the previous network and performance
does not degrade completely when noisy patterns are present
in the pattern set. Likewise, noise is not handled easily in AI
symbolic processing systems. While noise may be present in
real student data, the network can learn the overall method of
the student as shown in this experiment. With further design
changes on the network, it may become very resilient to noise.

Of the 110 subtraction errors that Burton and Brown found,
16 of the errors can be handJed by the network. The network
can recognize more of the 110 errom, since many are similar to
the errors chosen in this experiment. Errors that the network
cannot deal with are those that require past and future contexts
for each subtrwtion step. For instance, earlier in the chapter,
an error is shown where the student incremented from the point
of the borrow. To recognize tMs type of error, a network must
know the column from where the borrow comes. Moving from
a feedforward paradigm to a recurrent paradigm may help to
recognim context sensitive errors.

In total, over 161 training runs were made with this network in
order to determine its learning abllit y (additional runs were made
in trying other networks as well). The information obtained in
these runs may be used in the design of a better network.

Conclusion

The design of a neural student model must be a careful and
thoughtful process. The domain must be translated into a pat-
tern recognition task and provision for as many student answers
(right or wrong) as possible must be made. The network, how-
ever, may have to undergo several changes before it character-
izes a student’s cognitive processes well. Certainly any software
system must evolve to perform its task adequately. The design
effort is worth the trouble to be able to capture each individual

TABLE VIII: E3 - SIJBTRACTS SMALLER FROM LARGER DIGIT
r

‘Lttem ‘% M

mmng Pat terns Present Pat tems r al 1teratlOns
Recognized Recognized RecOOA

A
‘zeal

100% 10070
1:99

347
10 Missing 100% 99% 99% 2,100
20 Missing 1.95 90% 100% 99% 276
30 Missing 1.98 93% 100% 99% 362
40 Missing 1.94 95% 100% 99% 495
50 Missing 1.95 84% 100% 96% 251
60 Missing 1.97 87% 100% 96% 52S

TABLE IX: E3 - THINKS 0- n IS O (NO BORROW)

Run IS quam

T
Ei-ror

A at terns 1.99
10 Missing 1.92
20 Missing 1.95
30 Missing 1.94
40 Missing 1.98
50 Missing 1.88
60 Missin 1.98

Mssmg Pattems Present Pat terns r al
Recognized

Iterations
Recognized Rec&ized

100% 10070 1,938
80% 100% 99% 1,310
75% 10070 98% 1,626
73% 10070 96% 1,191
7570 100% 95% 1,106
58% 99% 89~o 876
47% 99% 84% 1,135

TABLE X: E3 - AVERAGE NUMBER OF PATTERNS RECOGNIZED

Run Mwwng Pat terns Present Patterns T al
Recotized Recomized RecoO&zed

All Patterns NA 99% 99%
10 Missing 82!’o 99’70 9970
20 Mizaing 77% 99% 98’%
30 Missing 70% 99% 95%
40 Missing 66% 99% 93%
50 Missing 61% 99%
60 Missin~

90%
52% 9970 85%

TABLE XI: E3 - CORRECT SUBTRACTION WITH NO MISSING PATTERNS

Run
‘3

uare Mmsmg Patterns Present Patterns T at Iterations
rror Recodzed Recomuzed Rec~lnized

10 Added 24.77 83% 83%
20 Added 18.23 N;

20,000
95yo 95%

30 Added 32.84 NA
20,000

90% 90% 20,000
40 Added 44.69 85% 85% 20,000
50 Added 64.32 :2 79% 79%
60 Added 69.35 NA

20,000
82% 82% 20,000 ,

-. . “.-..4-” . ..-”*. ”-” , ‘ . ..”#.. ”C..

F 10 Added 1 34.44 I 40% I 72% I 67!

TABLE XII: E3 - CORRECT SUBTRACTION WITH 30 MISSING PATTERNS

[R
un

$%!.? I Mlssmg Pat terns Present Patterns Total Iterations
F?.p.. ”:.n,l R..a-;...-l n...-;.~

Y 20,000
20 Added 21.54 53% 89% 84: 20,Oou
30 Added 58.04 30% ;;3 63~o 20,000
40 Added 55.12 37% 67%
50 Added 58.56

20,000
23yo 73% 66y0 20,000

60 Added 62.39 30% 69% 63% 20,000

TABLE XIII: E3 - CORRECT SUBTRACTION WITH 60 MISSING PATTERNS

Mln ‘1!uare Mlssmg P attems Present Patterns T al Iterations
rror Recognized Recognized Rec&ized

10 Added 4.50 2;g 96M 75%
20 Added 32.04

20,000 ‘
56% 20,000

30 Added 50.41 22% 63%
40 Added

51%
33.72 27% 79%

20,000
63% 20,000

50 Added 38.06 ;:? 84% 64?f0 20,000
60 Added 47.80 0 74% 58% 20,000

TABLE XIV: E3 - AVERAGE BEHAVIOR OF NETWORK WITH NOISY PATTERNS

Run Mlssmg P at terns Present Patterns T al
Recomized RecoKnlzed RecoO& “zeal

10 Added 36% 84% ;3#
20 Added 28% 81%
30 Added 28% 79% 72%
40 Added 26% 75% 68Y
50 Added 18% 76% 68%
60 Added 22% 7570 67%

student’s procedure in order for the ITS to adapt better to a
student’s needs.

The experiments showed the behavior of neural networks in var-
ious situations. Experiment one demonstrated that the domain
must be constrained so that the network can be @ined with as
few problems as one student nnght work. Experiment two gave
more favorable results since the network was able to generalise
from the training pattern set to unknown patterns. This ex-
periment also revealed that the network has enough parameter
adjustments to be able to be tailored to an individual student.
With a program to vary these adjustments automatically, the d-
signer’s job would be facilitated. Experiment three yielded even
more encouraging results. The network in this experiment w=
able to generalize even better than the network in experiment
two and could handle noise with relative grace.

The results of experiments two and three indicate that neural.
networks are a viable tool with which to constmct a student
model. Neural networks are executable, can derive the overall
gist of a pattern set, and can function in the presence of noisy
data. They may be tailored to individual students through pa-
rameter adjustments and may be updated when new student
data becomes available. In many ways, they fit the definition of
the quintessential student model.

Since neural networks can generalize over a pattern set, they can
be used to predict what a student might do next on a problem
solving step. If a network were designed to learn the student’s
problem solving procedure, then it could train on the student’s
procedure and simply reflect that procedure on patterns it has
not seen before. The network, therefore, could predict what the
student might do next without having a restrictive interface that
would force the student to perform a step unnatural to him as
with model tracing. The student’s own procedure, therefore,
could be corrected, if necessary, to help the student to learn the
domain better.

The next step in neural student modeling is to place a neural
network into the student model of an intelligent tutoring system.
The advantages and disadvantages of the neuraf student model
in a working ITS need to be compared to the advantages and
disadvantages of existing student models. This step must be
taken in o~der to refine the neural student model and to make it
more efficient at Its task.

Acknowledgements

The authors wish to thank General Dynamics of San Diego, Cal-
ifornia, for helping to fund the research reported in this paper.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

R. Beale and J. Finlay, “User modelling with a neural sys-
tem,” Technical Report YCS1 18, Department of Computer
Science, University of York, I-leslington, York, England,
1989.

J. S. Brown and R. R. Burton, “Diagnostic models for proce-
dural bugs in basic mathematical skills,” Cognitive Science,
VO1, 2, pp. 155-192, 1978.

W. J. Clancey, “Qualitative student models,” Technical Re-
port STAN-CS-87-1 171, Department of Computer Science,
Stanford University, Stanford, CA, May 1986.

J. E. Friend and R. R. Burton, Teacher’s Guide /or Diag-
nostic Testing in Arithmetic: Subtraction. Palo Alto, CA:
Cognitive and Instructional Sciences, Xerox Palo Alto Re-
search Center, 1980.

S. Mengel, Using Neural Network$ to Predict Student Re-
sponses in Intelligent Tutoring Systems. Doctoral Disser-
tation, Texss A&M Univemity, Computer Science Dept.,
1990.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Lear-
ning internal representations by error propagation ,“ in Par-
allel Distributed Processing: Volume I, D. E. Rumelhart,
J. L. McClelland, and the PDP Research Group. Cam-
bridge, MA: The MIT Press, 1986, pp. 318-362.

P. K. Simpson (General Dynamics, San Diego, CA), “A re-
view of artificial neural systems I: foundations,” CRC &it-

ical Reviews in Artificial Intelligence, in review, May 1988.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

J. Self, “Bypassing the intractable problem of student mod-
eling,” in Intelligent Tutoring Syatema. Montr6al, Quebec,
Canada Universit6 de Montr4al, 1968, pp. 18-24.

D. SIeerrum and J. S. Brown, “Introduction: intelligent tu-
toring systems~ in Intelligent Tutoring Systems, D. Slee-
rnan and J. S. Brown, Eds. Orlando, FL: Academic Press,
1982, pp. 1-11.

G. Tesauro and T. J. Sejnowski, “A parallel network that
learns to play backgammon,” Artificial Intelligence, vol. 39,
pp. 357-390, 1989.

K. VanLehn, “Student modeling,” in Foundations of Intel-
/agent Tutoring Syatema, M. C. Poison and J. J. Richardson,
Eds. Htisdale, NJ: Lawrence Erlbaum Associates, 1988,
pp. 55-78.

P. D. Wasserman, Neural L’omputing Theory and Practice.
New York: Van Nostrand Reinhold, 1989.

E. Wenger, Artificial Intelligence and Tutoring Systems.
Los Altos, CA: Morgan Kaufmann Publishers, 1987.

R. Zerwekh, “Classifying competence levels using adaptive
remmance theory: modeling learner perfcmnance ,“ in Fourth
Conference on Neural Networks and Parallel Distributed
Processing. Indiana University and Purdue University, April
1991.

-

