Using a Neural Network to
Predict Student Responses

tSusan Mengel, {William Lively
8
tUniversity of Arkansas
ITexas A&M University

Abstract.

One of the important components in an intelligent tutoring sys-
tem is the student model. This model is used to predict what
the student may do next as well as to serve as a repository of
past student solutions. The student model is important in that it
can help to direct the student to unknown material when enough
concepts have been mastered and to material that needs to be

reviewed when the student is unsure. Some student models have
tried to predict student solution steps by restricting the inter-

face to the point where the student cannot make an unknown
move. Others do not concentrate on prediction, but instead con-
centrate on remedying errors in problem solutions. Since the
problem of prediction is difficult, another tool, the neural net-
work, should prove useful. Neural networks have the ability to
generalize over a set of student answers. This ability gives the
network the capacity to answer as the student would on prob-
lems that the network has never seen before. Given this exciting
paossibility, research has been started using the backpropagation
model of neural networks to learn a student’'s method in per-
forming subtraction. The preliminary results reported in this
paper are encouraging and serve to show the promise of neural
networks in the student model of intelligent tutoring systems.

Introduction

Intelligent tutoring systems (ITS) traditionally consist of four
components: the expert module, the student model, the tutoring
mocdule, and the interface module. The expert module contains
the domain knowledge of a human expert and is used to solve
problemns and make inferences. The student model is utilized by
diagnosis procedures to make an approximation of the student’s
state of knowledge. Since a student may not work problems as
efficiently as an expert, the tutoring module embodies the strate-
gies necessary to reduce the difference between the student’s and
the expert’s performance. The interface module functions as the
mediator between the student and the ITS in the hope that the
student will learn the material and the ITS will interpret the stu-
dent's actions appropriately. Specifically, the interface presents
the I'TS’s messages to the student and sends the student’s input
to the system.

One of the components of an ITS is the focus of this paper,
namely. the student model. Several techniques have been used
by other researchers to implement student models in order to
predict student. responses or to diagnose student errors. These
strategies include the use of planning techniques for prediction
and of bug catalogs enumerating student mistakes to find student
errors. Although they have not been used in previous ITS for
prediction, neural networks are beginning to be recognized as
a possible tool for predicting student answers. These networks
are able to memorize a pattern set, to generalize over a pattern
set, to classify like patterns together, and to associate different
patterns together. These attractive qualities should prove to be
an asset to ITS in the student model.

Permission to copy without fee all or part of this material is
granted provided that the copies aras not mede or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date sppear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

® 1992 ACM 0-89791-502-X/92/0002/0669...$1.50

Student Model

Several approaches to constructing the student model have been
implemented which do not use neural networks. These ap-
proaches include the overlay model, bug libraries, plan recog-
nition, issue tracing, expert systems, model-tracing, condition
induction, and path finding. The details of these implementa-
tions may be found in VanLehn[11] and typically use traditional
symbolic processing mechanisms, such as heuristic search or rule-
based representations.

Beale and Finlay[1] and Zerwekh([14] have used neural networks
in user and student models, respectively. Beale and Finlay em-
ployed a network to classify experts and novices in an exploratory
functional programming environment and a network to deter-
mine user tasks in an on-line bibliography system. Zerwekh's
network classifies foreign language students based upon their per-
formance in a series of lessons.

Researchers have higher expectations for the student model than
what actually is implemented. According to Wenger{13], the stu-
dent model should reflect those aspects of student behavior and
knowledge that affect the student’s learning ability. The model
should be executable and should be able to change as more di-
agnostic data is made available to the system. Sleeman and
Brown[9] add three issues that the student model must incor-
porate. The model must determine how to assign blame in the
presence of a student failure to a problem in which more than
one skill is necessary for solution development. The model must
limit the number of hypotheses as to the student’s erroneocus
behavior so a combinatorial explosion of possibilities does not
occur. Finally, the model should be able to work in the presence
of noisy data when the student makes errors because of fatigue or
overload. Clancey[3] equates the student model to a simulation
model consisting of the student’s knowledge and the student’s
inference procedure used to operate upon that knowledge. This
type of model can be used to predict what the student will do
next and to find the basis in the student’s past history of his
problem solving procedure.

An alternative viewpoint for a less complex student model than
the expectations described in the preceding paragraph is held by
Self[8]. The student model may serve as a repository for student
beliefs about the learning material. These beliefs should be able
to be obtained only through the interface instead of through us-
ing a complex inferencing procedure to generate them. Further,
the student model should be visible to the student so that the
student can refine and replace beliefs as necessary (this process
is aided by a collaborative tutoring module that serves to guide
the student strategically through the learning material without
making right or wrong value judgements upon the student’s be-
liefs).

Neural Nets

Neural networks are mathematical simulations of the human
brain. The human brain has a massively parallel architecture

of some 10'! neurons where each neuron may be connected to as
many as 1,000 to 10,000 nther neurons. Communication occurs
among the neuronal connections via chemicals (neurotransmit-
ters) that can be inhibitory or excitatory. If enough excitatory
input is received to override the inhibitory input and exceed a
neuron'’s threshold, then the neuron fires; i.e., sends an electrical
signal down its axon which causes it to release neurotransmitters
to other neurons.

The computational neuron{7] (shown in Figure 1) receives n in-
puts (from the environment or from other connecting neurons)
and produces one output (to the environment or to other neu-

o

iwo

T (Z;:l tjuy — GWO) °

.
1

tn—P

Wn

Fig. 1. Artificial neural processing unit.

L

Qutput Layer
Hidden Layer

Input Layer

Fig. 2. Neural network.

rons). A neuron may have an additional input, @, that acts as
a threshold or as an outside environmental input. If the input is
from the environment, then such input should be received with-
out modification by the neuron. If the input is from a connecting
neuron, then the input may need to be attenuated or strength-
ened. For this purpose, the input may be multiplied by a weight.

To produce its output, the neuron may use a threshold (activa-
tion or signal) function to map the input to a specified range.
Usually this range is very small ([0,1]) in order to keep neurons
from having extremely large values. Using a threshold function is
often necessary to cause an entire network of neurons to converge
or settle down during training and recall.

Neurons generally are connected together into formations that
are found in the brain[12]. For instance, some neural networks
may be connected in a hierarchical fashion; i.e., a layer or field
of neurons (a set of neurons that reside in the same group) may
be connected to an upper layer of neurons, and that upper layer
may be connected to yet another higher layer. An example of a
three layer network is shown in Figure 2. Each field or layer has
some number of neurons and the connections may be made intra-
field where neurons in the same field are connected to each other,
inter-field where neurons in one field are connected to neurons in
different fields, or both. Usually, there exists an input field, an
output field, and fields in between those. The in between fields
are known as hidden layers.

The weights on the connections hold the information that the
entire network has learned in order to perform correctly;i.e., the
weights correspond to long term memory in humans. The weights
also are characterized as long term memory because changes to
them occurin very small increments; therefore, they do not forget
quickly. The neuron, itself, corresponds to short term memory
because it replaces its value every time new input is presented.

The weights can be modified as the network is trained so that the
network produces the desired output. For example, the weight
change of a weight can be given by an equation, such as the one
for backpropagation[6]:

Aw = Ao + quprcv"ous

where) is the learning rate, § is the output error of the neuron
connected to the weight, o is the output of that neuron, and u
is the momentum term. The learning rate determines the size

a) Change 0-n to 9-n. b) Subtract smaller from larger digit.

540 456
—~4 34 374
115 122

c) Add 10 to borrower. d) Increment from point of borrow.
678

70l3 tagls
-60 5 —511 5
10 8 167 8

Fig. 3. Subtraction errors.

of the weight changes and the momentum term is designed to
keep the network from becoming trapped in a local minimum.
As the weight changes are made, the network travels through
hills and valleys until it becomes trapped in a valley which is
characterized by the fact that further weight changes have little
effect upon the current value of the weights. If the valley is not
the global minimum, but instead is a local minimum, then the
network may not have learned properly; i.e., the network may
not give the correct output for an input on which it has been
trained.

The signals or information flow in a neural network may be feed-
forward (information flows in one direction from the input layer
to the output layer), feedback (information flows in either di-
rection; i.e., it can bounce back and forth from input to output
layer), or lateral (information flows among neighboring neurons
in the same field). A network with feedback is known as a re-
current network. Laterally connected neurons usually occur in
the output field of competitive networks. A competitive network
only allows one output neuron to fire thereby classifying its in-
put. The output neuron also may send signals over the lateral
connections preventing the other output neurons from firing.

Neural networks map data to data and can store two types of
patterns or vectors: spatial, such as a single static image, and
spatiotemporal, such as a sequence of spatial patterns. Patterns
are generally sequences of one’s and zero's and are given mean-
ing by the designer of the neural network. If a neural network
only stores single patterns (A;,..., Ay), then it is autoassocia-
tive. If it stores pattern pairs ({A1, B1),...,(An, Bn)), then it
is heteroassociative.

Student Model Experiments

To demonstrate the usefulness of neural networks in the student
model, a set of three experiments was performed in order to an-
alyze the predictive power of the networks even with incomplete
or conflicting data. This section shows the progression of the ex-
periments to elucidate the factors involved when using a neural
network in the student model. First, the domain, data, and net-
work learning paradigm of the experiments are considered. Then
three experiments and their results are discussed.

Domain

The domain that was chosen is subtraction. The reason for this
choice is that subtraction problems may be mapped into a prob-

lem pattern and then into an answer pattern for a neural network
to learn. A more important reason for this choice is that Brown
and Burton[2] have analyzed subtraction so well. In fact, they
found 110 bugs students can commit when solving a subtraction
problem and enumerated the bugs in the manual by Friend and
Burton[4].

The subtraction errors students committed varied greatly and
could be quite complex. Some students ignored the subtraction
sign and performed addition. Many errors involved borrowin,

where 0 — n would be changed to 9 — n. Also, m — n woul

be changed to n — m if n were greater than m. Some students
would not borrow across a zero, they simply would add ten to the
column that required a borrow. When borrowing across several
zeroes, some students would add one to the last borrow in suc-
cession so that 7003 would become 678(13) after borrowing one
from the seven. Examples of these errors are shown in Figure 3.

Network Training Data

For the experiments, tight control needed to be maintained over
the data so that the predictive power of the networks could be
measured accurately. To maintain this control, synthefic student
data generated from the results found by Brown and Burton
was used. Thus, all possible answers to subtraction problems
presented to a network could be obtained. Real student data
would not be as complete and so a network’s results on missing
data (i.e., data on which it had not been trained) could not he
checked if the student had not worked the problem. Furthermore,
repeating Brown and Burton's study by analyzing the work of
1300 students would have detracted from the goal of showing the
predictive power of neural networks. Fortunately, their study is
exhaustive and a good representation of what students might do
when performing subtraction.

Network Learning Paradigm

Backpropagation was the paradigm used since a backpropagation
network is known to be able to generalize over a pattern space
and 1o learn far more patterns than the number of neurons in
the network(6]. 1t is a feedforward paradigm and is sufficient for
showing the predictive power of neural networks.

Erperiments

The experiments were designed to see if neural networks can
replicate the behavior of a student working subtraction prob-
lems correctly or incorrectly when the data from the student is
complete, incomplete, or noisy. The overall approach consisted
of the following major steps:

o design a network to perform subtraction
e train the network on complete data
¢ irain the network on incomplete data

e train the network on erroneous data

e train the network on noisy data.

¢ evaluate the network's ability to model the student’s cog-
nitive processes under each scenario.

Specifically, the first part of the experiments involved design-
ing and training a backpropagation network in order to see if
the network could perform subtraction. Having determined that
the network could perform subtraction, random patterns were
deleted from the pattern set in increments of ten to see how the
network performed in the absence of some information. Follow-
ing this test, the network was trained on data which had some of
the errors intraduced from the manual by Friend and Burton[4].
Once again, after the complete pattern set with errors was used,
random patterns were deleted in increments of ten to determine
how well the network generalized with incomplete data. Further.
conflicting data representing a student's careless or random er-
rors was Introduced into the pattern set to see if the network
trained properly and reflected the gist of the problem solving
process of the student.

The neural networks were simulated by a C program written by
the author on a Sun-3' workstation running UNIX2. All of the
following experiments were performed with this program. The
program implements the equations of Rumethart, Hinton, and
Williams[6] with the following exception: the derivative of the
sigmoid function is not used on the output layer error. Several
experiments on networks without the derivative caused learning
to occur much faster. The training of the network was stopped
when the error of the output layer neurons reached a predeter-
mined cutoff point. This error is calculated in the following man-
ner. For each pattern, the error is % Z‘(t. -0)2 where t, is the
target output for neuron ¢ and o, is the actual output. The error
for all patterns is summed yielding the overall error (square er-
ror) used to determine the goodness of network learning. Since
the networks may not learn all of the patterns, to stop training
when the network will not learn the patterns any better is best.
During training, the weights and biases were updated after each
pattern was presented.

}Registered trademark of Sun Microsystems, Incorporated.
2Registered trademark of AT&T

-4

000000Q

t

[y L
00 - 000 - d0 000 00J
01 9 01 9 b e 1 e
L J L] 1 J L il
top bottom top hottom
digit digit digit digit
b - borrow e - equal
h - high 1- low

Fig. 4. First single-calumn subtraction network.

Ezperiment One: After discovering that subtraction could be
expressed in terms of a pattern recognition task and that the area
of subtraction had been researched well, the design of the net-
work remained. This network needed to learn subtraction even
with incomplete data since the number of problems a student
may be expected to work is not infinite. Therefore, the domain
was constrained to problems involving a larger three-digit num-
ber minus a smaller three-digit number. Unfortunately, the total
number of patterns that the network could learn turned out to
be 500,500 (1000 patterns: 999 — n, 999 patterns: 998 —rn. ..., |
pattern: 0—0) even with the aforementioned restriction of three-
digit problems. Obviously, a student cannot be expected to work
this many problems. The network, however, would need almost
that many patterns to train properly. To get around this diffi-
culty, the number of neuronal connections was constrained and
the pattern set was limited to 20 patterns to see if the network
could train well on an incamplete number of patterns.

Several networks were tried to perform three-digit subtraction.
None of them would even converge. Instead they diverged with
the weights taking on ever increasing valies.

The result of this experiment showed the difficulty of overcoming
the scaling problem in neural networks. If the training patiern
set is not large enough, then a network may not he able to learn
the patterns. For any ITS, a network, however, must be de-
signed so that the total pattern set does not exceed the number
of problems a student is likely to work. Sometimes additional
information can be added to each of the patterns to help the
network train with a smaller pattern set as with Tesauro and
Sejnowski’s[10] backgamimon network (the number of possible
moves in backgammon is prohibitively large, but they were able
to train the network on 3202 board positions with 429 input units
denoting seven other characteristics besides the board configu-
ration}. Even with their success, finding another network with a
much smaller pattern set seemed appropriate.

Erperiment Two: Instead of using a three-digit problem, the
use of a network that only operated upon a single column (two
digits) at a time seemed better. The network so designed is
shown in Figure 4. Part of the input layer consists of the two
digits where a one would be placed in neuron n and zeroes in the
rest for a particular digit. For instance. 0001000000 0000000001
would represent 3 — 9 since a one is in the three’s position for
the top digit and a one is in the nine’s position for the bottom
digit. The next input neuron denotes whether the subtraction is
performed in the presence of a borrow (1 - yes and 0 - no). The
next six neurons denote whether the top digit is greater than (h),
less than (1}, or equal to (e} the bottom digit. For example, these
neurons would take on the values 001100 for 3 — 9 because three
is less than nine. The six neurons are present to help the process
of generalization. All of the input layer neurons are connected
to the middle layer, but the borrow and comparison neurons also
are connected to the top layer. This action was taken to let the
additional neurons affect the generalization process in order to
enhance the process and to give them mnore of an effect in the
result of the subtraction. The antput layer only has one neuron

take on a value of one to denote the result of the subtraction.
In the case of 3 — 9 not in the presence of a horrow. the result

of the network would be 0000100000 for four (in the presence

TABLE I: E2 - TRAINING PATTERN SETS

Correct Subtraction .
Subtracts Smaller From Larger Digit
Writes 0 in Columns Requiring a Borrow
Thinks n — n is n
inks n —01is Q
inks 0~ nis 0
inks 0 —n isn
hinks 1 —nis 1
hanges0 —n to9—n
Borrows, but Writes 0 Where the Borrow is Needed

Qr=En

of a borrow, it would be 0001000000 for three). A hexadecimal
representation was not used since the digits A through F are not
present in the decimal number system. Interpreting a B as the
answer for 3 — 9 would be difficult. Instead, only the neuron with
the largest value in the output layer becomes a one.

The operation of this network may be thought to be similar to the
way a human might perform subtraction. First, the two digits in
the least significant column would be subtracted, then the next
two, and so forth. For the problem 634 —~ 299, the network would
get 4—9 first, 3—9 in the presence of a borrow second, and, finally,
6 — 2 in the presence of a borrow. This network, however, does
not propagate a borrow, itself, so an outside source would have
to generate a borrow for the network if a borrow were needed.
Since subtraction columns are used, the total pattern set consists
of 200 patterns (ten 9 — n not in the presence of a borrow, ten
9 — n in the presence of a borrow, ten 8 — n not in the presence
of a borrow, ten 8 — n in the presence of a borrow, ..., ten0—n
not in the presence of a borrow, ten 0 — n in the presence of a
borrow).

To test the network on incomplete data, random patterns were
eliminated from the pattern set in increments of ten for up to
60 patterns. The limit of 60 was set in order to be able to
perform more runs and because the remaining 140 patterns could
be obtained from a small subtraction test consisting of about 28
five-digit problems.

The backpropagation simulator for this experiment was run on a
Sun SPARCstation® which has considerable power. A limit was
set of 20,000 iterations through the entire pattern set (i.e., one
iteration is one time through the full pattern set) and of some
preset square error value to stop the network when convergence
had taken place. Instead of coming as close as possible to the
smallest square error that could be obtained, a coarser value was
used. Limitations on a training run were sct in order to be able
to have more training runs since 20,000 iterations through the
pattern set could take around 20 cpu hours or about two days.
The designer of an I'TS may wish to be more careful when train-
ing the network, but certainly would not want a network to take
too long to train. As much as possible, all learning parameters
were kept the same, once again, to allow for more runs.

The data sets used for the network in this experiment are shown
in Table I. First the correct subtraction training set was used
and then nine sets with subtraction errors were used.

Table II shows the result of training the network to do correct
subtraction. Each line in the table represents one pattern set
on which the network was trained. Line one is for the complete
pattern set of 200 patterns, line two is for the pattern set of 190
patterns constructed by the random deleting of 10 patterns from
the complete set of 200, and so forth. The square error columnn
shows the difference of the network output from the desired out-
put after the network completed training. The percentage of the
deleted patterns recognized and the training set patterns recog-
nized is shown in the next two columns. The percentage of pat-
terns in the complete pattern set of 200 the network recognized
is shown in the next column. The last column shows how many
times the network had to go through the training pattern set in
order to learn the patterns. For example, the network was able
to learn subtraction in 11,628 iterations through the complete
pattern set and had a square error of 1.99. On the other hand,
after eliminating just ten patterns, it learned the other 190 in
603 iterations and recognized 40% out of the ten eliminated cven
though those ten patterns had not been present in the training
pattern set. After eliminating twenty patterns, the network did
not even converge to the square error limit of 2.0.

3Registered trademark of Sun Microsystems, Incorporated.

Even with this odd behavior (probably the network encountered
a local minimum), the results are encouraging as in the case
with 30 patterns missing where 77% of the missing and 99% of
the present patterns were learned for a total of 96% correctness.
In contrast, a Tule base designed to process the training pattern
set of 140 patterns would not be able to handle the other 60
since rule bases can deal with only what is built into them. The
network, however, could recognize 37% of the deleted patterns.

The first error on which the network was trained was the error
where a student does not borrow at all, but instead subtracts the

smaller from the larger digit. The network learned this error well
as shown in Table III. In every case the network learned quickly
and only missed up to 11% of the full set of patterns. This
error is easy to learn since it is systematic; i.e., perform normal
subtraction when a borrow is not needed and do the same thing,
although wrong, when a borrow is needed.

The next error was the mistaken notion that 0—n is 0. This error
is harder to learn because it goes against the overall notion of the
pattern set which essentially is correct. Indeed, Table IV displays
the difficulty the network had with this error as in some cases
the network did not converge completely and missed more of the
patterns than in the runs with the previous error. The worst
performance occurred when 60 of the patterns were deleted and
only 77% of the full pattern set was recognized correctly with
only 23% of the missing patterns correctly recognized.

The fourth through the eighth errors are of the same type as the
previous error, rather peculiar and going against the overall pat-
tern set. The ninth error, however, is systematic. The network's
results on these errors may be found in Mengel[5).

The average number of patterns recognized by the network is
shown in Table V. The results are encouraging since the network
could learn the patterns present in the training set. The network
also could recognize properly over 50% of the patterns. It did
need some help in recognizing the missing patterns.

At this point, work on the network terminated since the network
was having trouble recognizing peculiar errors. Additionally, a
borrow was put into a pattern if correct subtraction required
it even if the incorrect subtraction did not. Clearly, another
network was needed.

The results of this experiment showed that the network has the
ability to generalize over complete and incomplete pattern sets.
A cause for concern to some [TS designers may be that the net-
work did not recognize all patterns and performed poorly in other
instances. That the student model be as accurate as possible is
very important, but even humans cannot achieve perfect perfor-
mance in all cases. Furthermore, other Al paradigms, such as
rule bases, cannot handle unknown data at all.

One of the more important issues is how many parameters can
be adjusted to affect the network’s learning performance. One
can reorder the pattern set, change the learning and momentum
terms, change the square error cutoff, alter the initial setting of
the weights before training, affect the updating of the weights
(after each presentation of the pattern set or after each pattern},
try numerous small changes to the backpropagation algorithm to
speed it up, and redesign the network. Having to modify all of
these parameters is beneficial rather than detrimental. Having
the ability to modify the student model for students who may
deviate from the norm is better. The alternative is having a
static model where no changes can be made and certain students
cannot be modeled.

The odd behavior of the network when training is a concern since
in some situations it did not train in 20,000 iterations when m
number of patterns were missing, but did just fine when n pat-
terns were missing. This problem is due to the network encoun-
tering local minima. Changing the weight initializations and
varying the learning rate may help to solve this difficulty.

Another concern is the time it took to train the network. Real-
istically, the network used in this experiment would not train on
a personal computer as quickly as it does on the Sun SPARC-
stations. Once trained, however, the network is almost instanta-
neous in getting the result on a given input. Also, more powerful
personal computers are becoming available.

The positive aspects of neural networks for ITS brought out by
this experiment include the ability to generalize, to train from
student data, and to recall patterns instantly. In total, over
70 training runs were made with the runs shown and runs to

TABLE II: E2 - CORRECT SUBTRACTION

Run Square | Missing Patterns | Present Patterns ~Total Tterations |
rror Recognized Recognized Recognized
All Patterns 1.99 100% 100% 11,628
10 Missing 1.99 40% 100% 97% 603
20 Missing 3.01 60% 99% 96% 20,000
30 Missing 1.99 % 93% 96% 1,571
40 Missing 2.54 40% 100% 88% 20,000
50 Missing 1.99 34% 100% 84% 4,165
60 Missing 1.99 37% 100% 81% 5,365
TABLE 1I1: E2 - SUBTRACTS SMALLER FROM LARGER DIGIT
Run Square | Missing Patterns | Present Patterns “Total Tterations
rror Recognized ecognized Recognize
ATl Patterns 1.99 100%, 160% 386
10 Missing 1.99 100% 100% 100% 438
20 Missing 1.99 100% 100% 100% 386
30 Missing 1.99 63% 99% 94% 568
40 Missing 1.98 70% 99% 93% 1,331
50 Missing 1.99 70% 29% 92% 1,229
60 Missing 1.99 63% 100% 89% 498
TABLE TV: E2 - THINKS 0—n IS O
Run Sguare | Missing Patterns | Present Patterns Total Tterations
rror Recognized Recognized Recognized
All Patterns 2.30 100% 100% 70,000
10 Missing 1.96 80% 99% 99% 4,660
20 Missing 6.50 30% 97% 90% 20,000
30 Missing 1.99 60% 100% 94% 14,405
40 Missing 1.96 40% 100% 88% 2,925
50 Missing 1.97 30% 99% 82% 3,160
60 Missing 1.96 23% 99% 77% 1,772
TABLE V: E2 - AVERAGE NUMBER OF PATTERNS RECOGNIZED
Run Missing Patterns | Present Patterns Total
Recognized Recognized Recognized
All Patterns 99% 99%
10 Missing 63% 99% 7%
20 Missing 61% 91% 88%
30 Missing 56% 99% 92%
40 Missing 43% 99% 88%
50 Missing 42% 99% 85%
60 Missing 38% 99% 31%
determine the optimal number of hidden units. An ITS designer
must be careful and be willing to take the time necessary to build
a good student model.
Erperiment Three: The final network is much like the previ- 0 16 34567896b
ous network with the addition of another hidden layer to help pO OQ000000

generalization and of an additional neuron in the output layer
indicating whether a borrow needs to be propagated to the next
column on the left. It is shown in Figure 5.

The borrow in the patterns is included only if the student actu-
ally makes one. Determining when the student borrows might
be hard to do, but a carefully designed interface or test could
help to discover when he is. Since the borrow is included in the
output layer, it could be fed into the input layer's borrow in the
style of a recurrent network. Further, the output borrow neuron
wauld indicate when the student is and is not borrowing to help
to remedy errors.

Once again, the backpropagation simulator was run on a Sun
SPARCstation with a limit of 20,000 iterations over the pattern
set and of some square error cutoff. This network also took
around two days to train for the 20, 000 iterations or about 20 cpu
hours. As with the previous experiment, the learning parameters
were kept the same.

The data sets used for the network in this experiment are shown
in Table VI. First the correct subtraction training set was used
and then sixteen sets with subtraction errors were used. Finally,
six sets with noise were used.

Table VII shows how the network trained and performed with
correct subtraction. This network did better than the previous
network both in terms of training and accuracy and seemed to
perform the worst when 60 patterns were eliminated as it recog-

A 4

00000

i

O0000000Q

9 e e
L L J L JL J
top bottom top bottom
digit digit digit digit
b - borrow e - equal
h - high - low

Fig. 5.

- A

Second single-column subtraction network.

TABLE VI: E3 - TRAINING PATTERN SETS

Correct Subtraction

Subtracts Smaller From Larger Digit

Thinks 0 — n is 0 (No Borrow)

Thinks n — n is 9 (Borrow)

Writes 0 in Every Borrow Column (Borrow)

Writes 0 in Every Borrow Column; Thinks 0 — n is n (No Borrow)
Thinks 1 — n is 0 if Borrowed From (No Further Borrow

Thinks 1 — 1 is 0 if Borrowed From (No Further Borrow

Thinks n — n is 1 if Borrowed From (No Further Borrow)
Changes Top Number to 10 in Borrow Column (Borrow)

Changes a 1 to a 10 in Borrow Column (Borrow

Subtracts 1 and Adds 10 in Borrow Column (Borrow)

Adds 10 in Borrow Column (No Borrow)

Borrows Across 1; Treats 1 as 0 (Borrow)

Does not Decrement Unless Bottom Smaller Than Top (Borrow)
Does not Decrement when Borrowing Across 0 ~ 0 (No Borrow)
Decrements to Left of 0 — 0, but Does not Change Top 0 (Borrow)
Correct Subtraction with No Missing Patterns (Noise Introduced)

Correct Subtraction with 10 Missing Patterns
Correct Subtraction with 20 Missing Patterns (Noise Introduced
Correct Subtraction with 30 Missing Patterns (Noise Introduced
Correct Subtraction with 40 Missing Patterns (Noise Introduced
Correct Subtraction with 50 Missing Patterns
Correct Subtraction with 60 Missing Patterns (Noise Introduced

oise Introduced

Noise Introduced

TABLE VII: E3 - CORRECT SUBTRACTION

Run Square | Missing Patterns | Present Patterns Total Tterations
ITOT Recognized Recognized Recognized
All Patterns 1.99 100% 100% 14,623
10 Missing 1.93 80% 100% 99% 1,098
20 Missing 1.98 85% 100% 99% 4,994
30 Missing 2.78 70% 100% 96% 8,898
40 Missing 1.99 75% 100% 95% 3,646
50 Missing 1.99 54% 100% 89% 5,207
60 Missing_ 1.96 38% 100% 82% 5,880
nized less than 50% of the missing patterns. degrade.

Tables VIII and IX show how the network performed on two
errors upon which the previous network was trained. The first
error involves subtracting the smaller from the larger digit and
the network learned it much better than the previous one. The
second error also was learned better even though it is peculiar.
The student simply writes a zero for 0 — n and does not borrow
from the column on the left.

The results of the network on the other subtraction error data
sets may be found in Mengel[5]. The network performed well on

recognizing these errors.

On average, the network performed satisfactorily as seen in Table
X. In fact, this network did better than the previous network.
Of course, it still lost accuracy when more and more patterns
were eliminated, but it still recognized over 50% of the missing
patterns. The results in this table are optimistic in nature since
they show that the network did well. Further research looks
prormising.

Tables XI through XIV show how the network performed when
noisy data was added to the correct subtraction pattern set (the
rest of the tables may be found in Mengel[5]). These patterns
differed from the original patterns in that the correct answer
was changed to an incorrect answer or the propagated borrow
was changed to the opposite of what it should be.

For each run, noisy patterns were added in increments of ten
located randomly in the training pattern set. Up to 60 noisy
patterns were included even though the event is unlikely that a
student would have this many random answers in a given sub-
traction problem set. Necessarily, the resiliency of network must
be determined to both small and large amounts of noise. Fur-
ther, the results of noise when ten, twenty, thirty, forty, fifty,
and sixty correct patterns are deleted from the full subtraction
pattern set must be seen.

After training was completed, the full correct subtraction set was
checked to see how the network would recognize the full set. The
results are summarized in the tables. The network performed
well when most of the correct subtraction patterns were present
in the training pattern set. As more correct patterns were deleted
and more noise was added, the network performance tended to

That the network recognized over 50% of the total correct sub-
traction pattern set on average is encouraging. Certainly, the
addition of noise does have an effect on network performance,
but, in reality, less noise may be present in real student data.

The results of this third experiment are far more encouraging
than the previous experiment. The network is able to perform
better on average than the previous network and performance
does not degrade completely when noisy patterns are present
in the pattern set. Likewise, noise is not handled easily in Al
symbolic processing systems. While noise may be present in
real student data, the network can learn the overall method of
the student as shown in this experiment. With further design
changes on the network, it may become very resilient to noise.

Of the 110 subtraction errors that Burton and Brown found,
16 of the errors can be handled by the network. The network
can recognize more of the 110 errors, since many are similar to
the errors chosen in this experiment. Errors that the network
cannot deal with are those that require past and future contexts
for each subtraction step. For instance, earlier in the chapter,
an error is shown where the student incremented from the point
of the borrow. To recognize this type of error, a network must
know the column from where the borrow comes. Moving from
a feedforward paradigm to a recurrent paradigm may help to
recognize context sensitive errors.

In total, over 161 training runs were made with this network in
order to determine its learning ability (additional runs were made
in trying other networks as well). The information obtained in
these runs may be used in the design of a better network.

Conclusion

The design of a neural student model must be a careful and
thoughtful process. The domain must be translated into a pat-
tern recognition task and provision for as many student answers
(right or wrong) as possible must be made. The network, how-
ever, may have to undergo several changes before it character-
izes a student’s cognitive processes well. Certainly any software
system must evolve to perform its task adequately. The design
effort is worth the trouble to be able to capture each individual

TABLE VIII: E3 - SUBTRACTS SMALLER FROM LARGER DIGIT
un Square | Missing Patterns | Present Patterns Total Tterations
ITOr Recognized Recognized Recognized
All Patterns 1.77 NA 100% 100% 347
10 Missing 1.99 100% 99% 99% 2,100
20 Missing 1.95 90% 100% 99% 276
30 Missing 1.98 93% 100% 99% 362
40 Missing 1.94 95% 100% 99% 495
50 Missing 1.95 84% 100% 96% 251
60 Missing 1.97 87% 100% 96% 525
TABLE IX: E3 - THINKS 0 - n IS 0 (NO BORROW)
"Run uare | Missing Patterns | Present Patterns Total Tterations
ITOr cognized Recogni Recognized
All Patterns 1.99 NA 100% 100% 1,938
10 Missing 1.92 80% 100% 99% 1,310
20 Missing 1.95 75% 100% 98% 1,626
30 Missing 1.94 73% 100% 96% 1,191
40 Missing 1.98 75% 100% 95% 1,108
50 Missing 1.88 58% 99% 89% 876
60 Missing 1.98 47% 99% 84% 1,135

TABLE X: E3 - AVERAGE NUMBER OF PATTERNS RECOGNIZED

un ‘Missing Patterns | Present Patterns “Total
Recognized Recognized Recognized
All Patterns NA 9% 9% |
10 Missing 82% 99% 99%
20 Missing 77% 99% 98%
30 Missing 70% 99% 95%
40 Missing 66% 99% 93%
50 Missing 61% 99% 90%
60 Missing 52% 99% 85%

TABLE XI: E3 - CORRECT SUBTRACTION WITH NO MISSING PATTERNS

Run ‘Square | Missing Patterns | Present Patterns Total Iterations
rror Recognized Recognized Recognized
10 Added 24.77 NA 83% 83% 20,000
20 Added 18.23 NA 95% 95% 20,000
30 Added 32.84 NA 90% 90% 20,000
40 Added 44.69 NA 85% 85% 20,000
50 Added 64.32 NA 79% 79% 20,000
60 Added 69.35 NA 82% 82% 20,000

TABLE XII: E3 - CORRECT SUBTRACTION WITH 30 MISSING PATTERNS

Run “Square Mnsra{ung Pz_:;:gms Prci{ent Pgttams R Total o Tterations
Iror ecogni ecognize ecogniz
10 Added 34.44 40% 2% 67% 20,000
20 Added 21.54 53% 89% 84% 20,000
30 Added 58.04 30% 68% 63% 20,000
40 Added 55.12 37% 72% 67% 20,000
50 Added 58.56 23% 73% 66% 20,000
60 Added 62.39 30% 69% 63% 20,000
TABLE XIII: E3 - CORRECT SUBTRACTION WITH 60 MISSING PATTERNS
Run Square | Missing Patterns | Present Patterns Total Tterations
TTOr cognized Recognized Recognized
10 Added 4.50 25% 96% 75% 20,000
20 Added 32.04 % 7% 56% 20,000
30 Added 50.41 22% 63% 51% 20,000
40 Added 33.72 27% 79% 63% 20,000
50 Added 38.06 18% 84% 64% 20,000
60 Added 47.80 18% 74% 58% 20,000

TABLE XIV: E3 - AVERAGE BEHAVIOR OF NETWORK WITH NOISY PATTERNS

Run Missing Patterns | Present Patterns Total
ecognized Recognized Recognized
10 Added 36% 84% 69%
20 Added 28% 81% 73%
30 Added 28% 79% 72%
40 Added 26% 75% 68%
50 Added 18% 76% 68‘%
60 Added 22% 75% 67%

student’s procedure in order for the ITS to adapt better to a
student’s needs.

The experiments showed the behavior of neural networks in var-
ious situations. Experiment one demonstrated that the domain

must be constrained so that the network can be trained with as
few problems as one student might work. Experiment two gave

more favorable results since the network was able to generalize
from the training pattern set to unknown patterns. This ex-
periment also revealed that the network has enough parameter
adjustments to be able to be tailored to an individual student.
With a program to vary these adjustments automatically, the de-
signer’s job would be facilitated. Experiment three yielded even
more encouraging results. The network in this experiment was
able to generalize even better than the network in experiment
two and could handle noise with relative grace.

The results of experiments two and three indicate that neural

networks are a viable tool with which to construct a student
model. Neural networks are executable, can derive the overall

gist of a pattern set, and can function in the presence of noisy
data. They may be tailored to individual students through pa-
rameter adjustments and may be updated when new student
data becomes available. In many ways, they fit the definition of
the quintessential student model.

Since neural networks can generalize over a pattern set, they can
be used to predict what a student might do next on a problem
solving step. If a network were designed to learn the student's
problem solving procedure, then it could train on the student's
procedure and simply reflect that procedure on patterns it has
not seen before. The network, therefore, could predict what the
student might do next without having a restrictive interface that
would force the student to perform a step unnatural to him as
with model tracing. The student’s own procedure, therefore,
could be corrected, if necessary, to help the student to learn the
domain better.

The next step in neural student modeling is to place a neural
network into the student model of an intelligent tutoring system.
The advantages and disadvantages of the neural student model
in a working ITS need to be compared to the advantages and
disadvantages of existing student models. This step must be

taken in order to refine the neural student model and to make it
more efficient at its task.

Acknowledgements

The authors wish to thank General Dynamics of San Diego, Cal-
ifornia, for helping to fund the research reported in this paper.

References

{1] R. Beale and J. Finlay, “User modelling with a neural sys-
tem,” Technical Report YCS118, Department of Computer
Science, University of York, Heslington, York, England,
1989,

[2) J.S.Brown and R. R. Burton, “Diagnostic models for proce-
dural bugs in basic mathematical skills,” Cognitive Science,
vol. 2, pp. 155-192, 1978.

[3] W.J. Clancey, “Qualitative student models,” Technical Re-
port STAN-CS-87-1171, Department of Computer Science,
Stanford University, Stanford, CA, May 1986.

{4] J. E. Friend and R. R. Burton, Teacher’s Guide for Diag-
nostic Testing in Arithmetic: Subtraction. Palo Alto, CA:
Cognitive and Instructional Sciences, Xerox Palo Alto Re-
search Center, 1980.

[5] S. Mengel, Using Neural Networks to Predict Student Re-
sponses in Intelligent Tutoring Systems. Doctoral Disser-
tation, Texas A&M University, Computer Science Dept.,
1990.

(6] D.E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learn-
ing internal representations by error propagation,” in Par-
allel Distributed Processing: Volume I, D. E. Rumelhart,
J. L. McClelland, and the PDP Research Group. Cam-
bridge, MA: The MIT Press, 1986, pp. 318-362.

[7] P. K. Simpson (General Dynamics, San Diego, CA), “A re-
view of artificial neural systems I: foundations,” CRC Crit-
ical Reviews in Artificial Intelligence, in review, May 1988.

[8] J. Self, “Bypassing the intractable problem of student mod-
elling,” in Intelligent Tutoring Systems. Montréal, Quebec,
Canada: Université de Montréal, 1988, pp. 18-24.

[9] D. Sleeman and J. S. Brown, “Introduction: intelligent tu-
toring systems,” in Intelligent Tutoring Systems, D. Slee-
man and J. S. Brown, Eds. Orlando, FL: Academic Press,
1982, pp. 1-11.

[10] G. Tesauro and T. J. Sejnowski, “A parallel network that
learns to play backgammon,” Artificial Intelligence, vol. 39,
pp. 357-390, 1989.

[11] K. VanLehn, “Student modeling,” in Foundations of Intel-
ligent Tutoring Systems, M. C. Polson and J. J. Richardson,
Eds. Hillsdale, NJ: Lawrence Erlbaum Associates, 1988,
pPp. 55-78.

[12} P. D. Wasserman, Neural Computing Theory and Practice.
New York: Van Nostrand Reinhold, 1989.

[13] E. Wenger, Artificial Intelligence and Tutoring Systems.
Los Altos, CA: Morgan Kaufmann Publishers, 1987.

(14] R. Zerwekh, “Classifying competence levels using adaptive
resonance theory: modeling learner performance,” in Fourth
Conference on Neural Networks and Parallel Distributed
Processing. Indiana University and Purdue University, April
1991.

